

エッセイ 警報の鉄則と宿命●西出則武

- 2018年6月18日大阪府北部の地震●岩田知孝/飯尾能久/
 - 松島信一—— 1
- 2018年大阪府北部地震の周辺活断層と地震活動への影響●遠田晋次 9
 - 北海道東部沖の巨大地震の可能性●佐竹健治――22
 - 福島県で節目を迎えた自然災害―1888年磐梯山噴火と
 - 1938年福島県東方沖地震— ●室谷智子——30
- 2015年5月30日小笠原諸島西方沖深発地震と異常震域の謎●古村孝志——40 フィリピン地震火山監視強化と防災情報の利活用推進
 - <平成 22~26 年度 SATREPS 課題の概要>●井上 公-----52
 - ハワイ島で起きる地震の原因と特徴●山田卓司――60
 - 地震の揺れを伝えない技術への挑戦●梶原浩一──64
 - 2018年北海道胆振東部地震(速報) 岡田義光 70
 - ●書評────74
 - ●新刊紹介——77
 - ●ADEP情報——77

囲み記事 地震波干渉法とは何か 福井地震から70年 韓国初の液状化被害

地震予知総合研究振興会

ASSOCIATION FOR THE DEVELOPMENT OF EARTHQUAKE PREDICTION

警報の鉄則と宿命 西出則武

気象庁では、地震に限らず、警報等を発表する業務に携わってきました。気象と地震・火山とでは、数値予報モデルの有無という点では差がありますが、警報を発表する考え方には共通点があります。 警報を適切に受け止めていただくためにぜひ知っておいてほしいことなのですが、誤解されやすいので、退職するまで話す機会はありませんでした。

警報は科学的な予想である予報の中で人命に関わる重大なものです.出し遅れや見逃しは極力避けなければなりません.そのため,警報には二つの鉄則があると思います.

一つ目は、「満点の答案でも間に合わなければ零 点」です、壁の後ろにいる象が鼻先だけを見せたと きに体重を予想するのが緊急地震速報、頭まで見え るか見えないうちに予想するのが津波警報だとたと えて説明しています、限られた時間内に得られる限 られたデータを限られた時間内に解析して現象を予 測しなければならないので、後から見れば不十分な 答案だと批判される宿命にあります。

二つ目は、「合理的な予測幅の中で最悪の現象を 想定」です.シンプルで理解しやすいと思い、津波 警報で説明しています.紀伊半島沖を震源とする M8の地震が発生しても、それが東南海地震か南海 地震かは2~3分ではわかりません.詳しい解析を していたら津波がきてしまいます.そこで、可能性 がある複数の地震断層から予想される津波をデータ ベースから取り出し、沿岸の地点ごとに比べて悪い (高い、早い)ほうを採用し、その結果から津波警 報を発表します.M8を大きく上回る地震と判断でき

西出則武 [にしで のりたけ] 現職 株式会社富士通 研究所シニアアドバイ ザー,東北大学特任教 授 略歷 1954年石川県小 松市生まれ, 1979年東 京大学大学院理学系研 究科修士課程(地震学 専攻) 修了ののち気象 庁入庁. 福岡管区気象 台長, 地震火山部長, 予報部長等を経て 2014 年気象庁長官, 2016年 より現職 研究分野 地震学 その他 テレビ朝日防 災アドバイザー,長野 県防災総合アドバイ ザー,一般財団法人砂 防・地すべり技術セン

ター理事

れば、全体が破壊した M9 級の地震による津波を想定して津波警報を発表し ます.結果的に、一部の地域で予測どおりでも、大半の地域では過大となり、 批判される宿命にあります.それでも、逃げてくれれば人命は救えると考え ます.「狼少年」にならないためには、このことを理解してもらう努力と、 社会がこれを容認してくれるよう予測の幅を小さくする努力を続ける必要が あります.

「合理的な」がキーワードだと思います.最新の地震学と周辺科学・技術 をもってしても予測には幅があることを,ていねいにわかりやすく説明する 努力が欠かせません.

一方,予測の幅を狭め,間に合う答案の成績を上げるためには,地震学と 周辺の科学・技術の発展が不可欠です.

私が若い頃には日単位の時間を要したような高度な解析処理が今では分単 位でできるようになってきていることを考えれば、未来は明るいと期待して います.

2018年6月18日大阪府北部の地震

岩田知孝・飯尾能久・松島信一

1. はじめに

平成30年6月18日7時58分頃に大阪府北部 の深さ約15kmで気象庁マグニチュード6.1の地 震が発生した.この地震により,大阪府で最大震 度6弱を観測し,被害を伴った.この地震の発震 機構は西北西-東南東に圧力軸を持つ型であった (以上,地震調査研究推進本部¹⁾).ここでは地震 (以下,震源のことを指す)の概要とその発生場, 強い揺れとなった理由,そして揺れによる被害の 概要について報告する.

2. 余震分布と活断層

本節では、この地震の概要と周辺の地震活動や 活断層の分布についてまとめる. 大阪府北部の地 震は有馬-高槻断層帯 (ATL)の東端近くで発生 した. 図1には、この地震の震源メカニズムを表 す初動解および CMT (Centroid Moment Tensor) 解を示す¹⁾ 初動解は断層破壊がはじまった時点 でのメカニズムを表していると考えることがで き. ほぼ東西方向に圧力軸を持つ逆断層型を示し ている。一方、CMT 解は断層破壊全体の特徴を 表していると考えることができ、初動解とは異な り、ダブルカップル(二対の偶力)震源としては 横ずれが卓越した解が求められているのと同時 に. 灰色の領域が帯のように広がっている. これ は、単純な1つの断層面で破壊したようなダブル カップル震源で表現できていない複雑な断層破壊 が起きたことを表している.

図2に、この地震の地震活動を周辺の活断層地 図とともに示す¹⁾.気象庁による地震活動の震央 分布はATLの地表トレースの周辺に「もわっと」 分布していることがわかる.本震発生直後から、 地震活動域の直上において,京都大学防災研究 所・九州大学・東京大学地震研究所合同地震観測 班による臨時地震観測が行われ,約100点の高感 度地震観測点が設置された.図3は,オンライン の4点と周辺の定常観測点((国研)防災科学技 術研究所,気象庁,(国研)産業技術総合研究所, 京都大学防災研究所による)を合わせて処理した 予察的な地震活動分布である²⁰.下の2つのパネ ルはそれぞれの領域の断面図である.周辺の微小 地震は深さ5~15km くらいで発生していること がしられているが,今回の地震活動は深さ9~13 km 程度の地震発生域の深部のみで起こっている ことがわかる.

図2では「もわっと」見えていた地震分布が, 図3を見ると、北側の約45°で東に傾斜する分布 と南側のほとんど垂直で南に少し傾斜している分 布の2つで構成されていることが分かる.この付 近では、東西の圧縮力による横ずれ型と逆断層型 の微小地震が混在して発生することがしられてお り、この地震分布と合わせると、北側の断層は、 断層の東側の岩盤が西側に対してせり上がる逆断 層型、南側の断層は、断層の北西側が南東側に対 して相対的に右へずれる横ずれ型であることが推 定される.横ずれ型の断層は、北から時計回りに 50°程度回転した走向をもっている。2つの異な る向きの断層が活動したと推定されることが、震 央分布が「もわっと」見えていることや、図1で 見えた初動および CMT の震源メカニズム解の違 いの理由といえる.

この2つの断層と活断層との関係はなかなか難 しい. 北側の逆断層型の断層がATLの地表ト レースのほぼ真下に存在する一方,南側の横ずれ 型の断層は2km程度南へ外れている.ATL付 近を境に北側が山地で南側が平野であることか ら,ATLは基本的に主に横ずれで北側隆起であ

図 1 大阪府北部の地震の(左)CMT 解と(右) 初動解¹⁾

図 2 大阪府北部の地震の地震活動分布(6月18日から30日まで,深さ0~20km, M0.5以上)と周辺の活断層の地表トレース¹⁾

ると推定されている.上記の東西の圧縮力を考慮 すると,ATLは高角度で北へ傾斜している可能 性が考えられ、今回の地震活動にみられる2つの 断層面とは調和的ではない.

図2に示されているように、今回の地震の震源 域周辺には、ATL以外にも上町断層帯や生駒断

図3 京都大学・九州大学・東京大学地震研究所 合同地震観測班による地震分布²⁾(6月18日 から6月21日まで、深さ8~14km).下左 図は赤矢印の向きにみた地震の深さ分布, 下右図は青矢印の向きにみた地震の深さ分 布.星印は気象庁による本震の震源位置

層帯など、多くの活断層が存在することがしられ ている。余震域は大阪平野の北東端付近に位置す るが、隣の京都盆地には宇治川断層、盆地の西側 には京都西山断層帯も存在する. 南部のほぼ垂直 の断層走向を周辺の活断層の地表トレース等の走 向と比較すると、宇治川断層とは約10°の差となっ ている. また、ATLの高槻-天王山間の部分の地 表トレースの走向も、北から時計回りに 50°程度 の方位を持っている. これらは延長すると余震域 付近に達する. ちなみに、ATLの主要部の走向 は北から80°方向のほぼ東西で、方向は約30°異 なっている. 北側の逆断層型の断層に関しては. 断層面傾斜角を 45°で地表まで延長すると、上町 断層の地表トレース付近に達するが、地震調査研 究推進本部によると、上町断層の深部の傾斜はよ り高角度に推定されている3). 生駒断層帯につい

図4 有馬-高槻断層帯の南側にみられる微小地震のリニアメント⁴⁾. 阿武山微小地震観測網による近畿 地方中北部における地震の震央分布(1976~1995年,深さ30km以浅). 有馬-高槻断層帯の南 側に微小地震が直線状に発生しており,その中のいくつかの地震のメカニズム解を示した. 黒の 大きな○は大阪府北部の地震のおおよその震央位置

ては、南北に近い地表トレースを北方に延長する と余震域に達するが、生駒断層帯は東へ傾斜する 逆断層であるので、深部においても同じように延

長した場合,余震域付近ではその位置は東へ外れ ることになる.

図4はこの地域における1976~1995年の約20

年間の地震活動を示している.近畿地方中北部で は、北摂・丹波山地の直下に塊状の活発な地震活 動域があるのに対して、ATL付近を境に、その南 側では微小地震の活動は非常に低くなる⁴⁾.ただ し、ATLの地表トレースの数 km 南には、N70°E 方向に並ぶ地震の線状配列が知られていた⁴⁾. 1995年兵庫県南部地震の最大余震は、実はこの 線状配列で起こった、今回の地震はその線状配列 の東端付近で発生した.

今回の地震活動域付近は,北側の山地と南側の 平野部と構造の不均質があり,地震の震源の絶対 位置を詳しく検討する必要がある.地震活動域付 近に,これまでは認定されていなかった活断層が 存在する可能性もあり,地震の線状配列も含め て,活断層との位置関係の解明は今後の重要な課 題である.

3. 強震動と震源過程

1995年兵庫県南部地震が引き起こした阪神・

淡路大震災を受けて、体感および周囲の状況から 推定していた震度を地面の揺れから震度値を算出 する計測震度計が全国の市町村自治体に設置され ることとなった。現在、大阪府には88点の計測 震度観測点がある。図5には気象庁震度データ ベースから、震源周辺域(大阪府、京都府、兵庫 県,奈良県の一部)の震度分布を示した⁵⁾.今回 の地震では高槻市, 枚方市, 茨木市, 箕面市, 大 阪市北区の5地点において最大震度6弱の揺れが 観測された。また、大阪府と京都府の計23地点 において震度5強を観測した. このような強い揺 れのほとんどは、震央(震源(震源断層の破壊開 始点)を地表に投影した位置:図5の×印)を中 心に北東-南西の方向に分布していて、特に震度 6弱の地点は、震央付近から南西方向にのみあっ た。この揺れが大きい領域は震源から近い距離に あることに加えて、大阪平野、京都盆地といった 堆積平野上に位置していることが言える.

このような高密度の震度観測網を活かして,被 害情報に関する情報提供が行われている.(国研)

図 5 大阪府北部の地震の際の震度分布5)

 図6 観測された最大速度値の距離分布.観測 値には Vs 30 に基づくサイト補正を行い, V_s600 m/s 相当の値にしている.実線と点 線は地震動予測式⁷⁾の平均値と標準偏差

防災科学技術研究所の J-RISQ 地震速報⁶⁰ では, 計測震度計の震度データと,表層地盤による地震 動(地震による揺れ)の増幅度(表層地盤増幅率 データ)を組み合わせて面的な震度分布を推定 し,人口データと照らし合わせることによって, ある震度以上の揺れに見舞われた震度遭遇人口の 推定値を発表している.震度データ等の入電が更 新されることによって評価結果も更新されてい く.今回の地震では,震度5強以上の震度遭遇人 口が2百万人,6弱以上は百万人と見積もられた (同日8時10分35秒の第7版(最終版)).これ は,地震規模がM6程度であったことから,強い 揺れの範囲が限定的であったけれども,多くの人 が強い揺れに見舞われたことがわかる.

これまでに起きた地震の強震記録の最大速度, 最大加速度といった観測値を地震規模,震源断層 からの距離,観測サイトの地盤増幅率等と組み合 わせた式(距離減衰式,あるいは地震動予測式)

図7 (上) 地震発生後6月19日までのM>1の地 震活動(震央)分布と仮定した断層面.(下) 推定された各断層面のずれ分布.☆印は破 壊開始点(震源位置)

を今回の観測データと比較することで、今回の地 震の揺れの特徴を見ることができる.図6に最大 速度(水平2成分の大きい値)の地震動予測式⁷⁾ と観測値との比較を示す⁸⁾.各観測記録は、浅部 地盤による経験的増幅度を補正し、工学的基盤相 当での地震動予測式と比較している.また震源断 層面は大きくないことから、断層最短距離の代わ りに震源距離を使った.震源距離約30kmより 遠い観測点は、地震動予測式の標準偏差内にほと んど分布しているが、それより近い観測点では、 平均以上、さらには平均+標準偏差より大きい最

図8 2018年6月21日現在での都市ガスの復旧進捗状況¹³⁾

大速度値を示す地点が多数存在したことがわかっ た.これらの観測点の多くは厚い堆積層を持つ大 阪平野内の観測点で,浅部地盤のみならず,深部 地盤による地震波増幅の影響があると考えること ができる.また,図面内にある ABU (阿武山観 測点)は震源の北西方向にある高槻市の丘陵部に ある観測点で,大阪堆積層の外にある基盤の観測 点であるので,観測点の地盤増幅の影響はないと 考えられるけれども,大きい最大速度値を示して いることから,震源特性による影響もあったこと がうかがえる.

地震の揺れは、震源断層面上でのずれ破壊の時 間進展と震源断層から観測点への地震波の伝播特 性によって式で表すことができるので、地震波の 伝播特性を適切に仮定することによって観測され た地震記録から震源断層面上でのずれ破壊の様子 を推定することができる。上記で紹介した強震記 録を用いた震源過程分析が行われた¹⁰.この推定 では、あらかじめ震源断層の形状を仮定する。2 章で紹介した地震活動分布や、CMT 解の結果を 考慮して、南北走向(351°)をもつ東傾斜50°の 断層面(以下断層①)と北東-南西走向(52°) をもつ高角(傾斜角77°)の南傾斜断層面(断層 ②)を仮定し、破壊開始点である震源位置を含ん で両断層面が交わるような2枚の震源断層面をお いた、マルチタイムウインドウ波形インバージョ ン解析を行って得られたずれ分布を、仮定した震 源断層面の地表投影図とともに図7に示す. ずれ が起きた広がりはどちらの断層面も3~4km四 方程度であった。 断層①では主として逆断層的 な動きを、断層②では右横ずれに加えて、逆断 層的な動き、つまり南東側のブロックが北西側の ブロックに対して持ち上がるような動きを含んで いることがわかった.この動きは、走向が似てい る ATL の長期的な上下運動とは逆であり、複雑 な活構造を有していることに起因するのかもしれ ない。 断層①のずれ分布は破壊開始点を中心に 広がっているのに対して、断層②では破壊開始 点がずれ分布の深いほうに位置している. ここで は掲載していないが、この断層②の破壊伝播は 深いほうから浅いほうに向かったことがこの解析 でわかっていて、西-南西方向へやや強い揺れが 伝わったことと対応している.

地震による被害

揺れによる被害は,2018年9月18日現在で死 者5名,重傷者40名,軽傷者414名,全壊家屋 16棟,半壊家屋472棟,一部損壊家屋53,751棟 である⁹⁾.死者と全壊家屋については,大阪府で 生じている. 死者のうち2名(高槻市と大阪市東 淀川区)は倒壊したブロック塀の下敷きになり, 2名(高槻市と茨木市)は家の中で「たんす」ま たは本棚の下敷きになり,1名(箕面市)は持病 の悪化が原因だった.つまり,建物の倒壊による 死者はいない.ただし,いずれの被害も震央より 南西方向に集まっている.

大阪府¹⁰⁾ によると、2018 年 10 月 15 日現在で 高槻市と茨木市ではそれぞれ全壊住家が 11 棟と 3 棟、半壊住家が 225 棟と 175 棟、一部損壊住家 が 20,087 棟と 15,625 棟だったが、茨木市の南の 摂津市およびその西の吹田市ではその 1/5~1/6 の被害棟数にとどまっている。枚方市大垣内と箕 面市栗生外院で震度 6 弱を観測した枚方市と箕面 市では、それぞれ住家被害は約 1 万 2 千棟と約 1.4 千棟と差がある。これらの原因については、 鋭意調査・研究が行われている。

ライフラインにも被害があり、特に都市ガスに ついては茨木市と高槻市の約6.4万戸と約4.6万 戸に摂津市と吹田市を併せて111.951 戸の供給が 停止した。大阪府北部の地震の3日後の2018年 6月21日までには導管網は9万戸分以上が復旧 したが、茨木市の7割の導管網は停止したまま だった^{11,12)}.都市ガスは、あらかじめ定められて いる地域(地震ブロック)において一定以上の大 きな揺れが検知された場合に、圧力調整器(ガバ ナ)がガス供給を自動遮断することによって、ブ ロック単位で供給が停止される¹³⁾.大阪府北部の 地震の際に、都市ガスの供給が停止されたブロッ クは図8で色が付けられた地域である。都市ガス の供給が停止した箇所は震央付近とそこから南西 にやや離れた地域で、その間の地域は停止されて いない、これは、震度分布が示すように、強い揺 れとなった地域は震央からの距離だけではなく. 他の震源特性や地盤特性に関係している可能性が 高いと考えられる.

5. まとめ

大阪府北部の地震の概要,強震動の特徴とその 成因,さらには地震被害について紹介した.2章 で紹介したように,地震発生直後から高感度地震 観測を展開し,詳細な地震活動の分析が行われた ほか,建物被害等と強震動,さらには強震動と地 盤特性や震源特性との関係を調べるための余震観 測や微動観測が多数の機関,研究者によって実施 された.今後これらの成果によって,大阪府北部 の地震の揺れと被害について詳細が明らかとなる ことが期待される.

本稿では紹介できなかったが、京阪神地域とい う日本第2の人口密集地の平日午前に発生した地 震により、大都市圏の交通機能は一時全停止し、 500万人以上に影響があった.最大震度6弱の揺 れに対し鉄道設備等はほとんど被害を受けなかっ たが、運転再開に向けた復旧作業の進め方にはさ まざまの課題を残した。高震度を受けた地域を通 るIR京都線や阪急電車、大阪メトロ等は当日の 深夜まで全線運転再開ができなかったことから. 2011年東日本大震災同様、多数の帰宅困難者に よる混乱が起きた.また.4章で記載したライフ ラインの復旧にも時間がかかり、「いつもの生活」 になかなか戻らない、といった課題もみつかっ た.発生が迫ってきている南海トラフ沿いの巨大 地震に限らず, 京阪神, 関西圏でも今後, 同様も しくはさらに大規模な地震が発生し、より強い揺 れに見舞われたときに、今回起きてしまったブ ロック塀による死者などをなくすための建物等の 物的被害を軽減することはもとより、都市機能を 損失しない.機能がいったん落ちても早急に平時 に戻すことができるような対策と、それらを達成 するための各種の研究を継続することが重要と考 える

参考文献

- 1) 地震調査研究推進本部. 2018. 2018 年 6 月 18 日 大阪府北部の地震の評価. https://www.jishin.go.jp/ evaluation/seismicity_monthly/
- 東京大学地震研究所.2018.2018年6月18日大 阪府北部の地震後の地震活動,第319回地震調査委 員会資料.
- 3) 地震調査研究推進本部・京都大学防災研究所.
 2013. 上町断層帯における重点的な調査観測 平成

22~24年度成果報告書.

- 京都大学防災研究所. 1996. 兵庫県南部地震余震 域周辺の地震活動, 地震予知連絡会会報, 55, 508-515.
- 気象庁: 震度データベース検索. http://www.data. jma.gojp/svd/eqdb/data/shindo/Event.php?ID=9902228 (2018 年 10 月 16 日閲覧)
- 6) 防災科学技術研究所 J-RISQ 地震速報. http://www. j-risq.bosai.go.jp/report/(2018年10月16日閲覧)
- 7) 司 宏俊・翠川三郎. 1999. 断層タイプ及び地盤 条件を考慮した最大加速度・最大速度の距離減衰 式. https://doi.org/10.3130/aijs.64.63_2
- 岩田知孝・浅野公之.2018.2018年大阪府北部の地震の強震動,第55回自然災害総合シンポジウム資料集.
- 消防庁応急対策室.2018. 大阪府北部を震源とする地震による被害及び消防機関等の対応状況(第29報). http://www.fdma.go.jp/bn/2018/detail/1050. html
- 大阪府危機管理室災害対策課. 2018. 大阪府北部 を震源とする地震に関する被害状況等について. http://www.pref.osaka.lg.jp/shobobosai/osaka_ jishin/higai.html (2018年10月16日閲覧)
- 大阪ガス株式会社. 2018. 都市ガス供給の復旧状 況などについて(第10報). http://www.osakagas. co.jp/company/press/emergency/1271523_38726. html
- 12) 大阪ガス株式会社. 2018. 都市ガス供給の復旧状 況などについて(第九報). http://www.osakagas. co.jp/company/press/emergency/1271512_38726. html
- 大阪ガス株式会社:復旧作業の流れ. 2018. http:// www.osakagas.co.jp/company/press/emergency/__ icsFiles/afieldfile/2018/06/19/180619_1_1.pdf (2018 年10月16日閲覧)

岩田知孝

[いわた ともたか]

現職 京都大学防災研究所教授, 地震調 查研究推進本部地震調査委員会委員, 強 震動評価部会長, 理学博士 略歷 京都大学大学院理学研究科博士後

期課程修了,日本学術振興会特別研究員,京都大学防 災研究所助手を経て現職

研究分野 強震動地震学

著書 地震の揺れを科学する(共著)(東大出版会), 東日本大震災合同調査報告 共通編1地震・地震動(分 担)(東日本大震災合同調査報告書編集委員会),防災 学ハンドブック(分担)(朝倉書店),自然災害と防災 の事典(分担)(丸善出版),他

飯尾能久

[いいお よしひさ]

現職 京都大学防災研究所地震予知研究 センター教授,地震調査研究推進本部地 震調査委員会委員,理学博士

略歷 京都大学理学研究科修士課程修

了,京都大学理学部助手,防災科学技術研究所主任研究官,同地球化学研究室長,東京大学地震研究所助教授,京都大学防災研究所助教授を経て現職

研究分野 地震学

著書 内陸地震はなぜ起こるのか(近未来社),教育現場の防災読本(分担)(京都大学出版会),図説 固体地球の事典(分担)(朝倉書店),自然災害と防災の事典(分担)(丸善出版),他

松島信一

[まつしま しんいち]

現職 京都大学防災研究所地震災害研究 部門・教授,博士(工学)

略歷 名古屋大学工学部卒,同大大学院 工学研究科博士前期課程修了.清水建設

株式会社技術研究所研究員,同副主任研究員(在職中, 九州大学大学院人間環境学研究科単位取得退学,文部 科学省研究開発局地震・防災研究課調査員(出向)), 京都大学防災研究所社会防災研究部門准教授を経て現 職

著書 自然災害と防災の事典(分担)(丸善出版),地 盤震動と強震動予測(分担)(日本建築学会), Preliminary Reconnaissance Report of the 2011 Tohoku-Chiho-Taiheiyo-Oki Earthquake (分担) (Springer), Studies on the 2011 Off the Pacific Coast of Tohoku Earthquake (分担) (Springer) 他

2018 年大阪府北部地震の周辺活断層と 地震活動への影響

遠田晋次

1. はじめに

平成30年6月18日大阪府北部の地震(以降, 大阪府北部地震)は、マグニチュード(M)6.1 という規模にもかかわらず、大阪府で観測史上初 の震度6弱を記録した、ブロック塀の倒壊等に よって5名の犠牲者を出す被害地震となった。

この地震にともなう地表地震断層は現地踏査だ けではなく干渉 SAR からも確認されていない. 活断層の固有地震(最大地震)よりも一回り小さ な地震とみられ,「震源を特定できない地震」(地 震調査研究推進本部地震調査委員会,2018a)の 1つに分類される.人口集中域のために被害に直 結したが,この規模の地震は日本列島内陸で1年 に平均1~2回程度発生している.地震学的には 特段驚くべきものではない.

一方で、地震発生場という視点からは、古くか ら近畿トライアングル(Hujita, 1962)と称され た活断層密集域で生じたことが重要である.震源 のごく近傍には、有馬-高槻断層帯、生駒断層帯、 上町断層帯、京都西山断層帯が位置する.本震直 後にはこれらの断層帯の深部延長部での活動が疑 われたが(地震調査研究推進本部地震調査委員 会、2018b)、いまのところ明確な結論はでてい ない.いずれにしても、これらの活断層帯の近傍 で生じた M6 地震であるため、平成 28 年の一連 の熊本地震(4月14日 M6.5 から 4 月 16 日 M7.3) と同様、周辺活断層による連鎖的な活動が懸念さ れている.

以下,本稿では地震連鎖や余震活動の評価に用 いられる静的クーロン応力変化を大阪府北部地震 に適用する.さらに,本震後約3カ月の地震活動 の時空間変化との対応を検討し、同地震による周辺への影響を議論する.

大阪府北部の地震による 静的クーロン応力変化

クーロン応力変化(Coulomb stress change) は、 Δ CFF もしくは Δ CFS と略して呼ばれること が多い(以下、本稿では Δ CFF とする). Δ CFF は剪断応力変化 $\Delta \tau$ 、法線応力変化 $\Delta \sigma$ 、見かけの 摩擦係数 μ 'を用いて下記の簡単な式で表される (King *et al.*, 1994).

$\Delta \text{CFF} = \Delta \tau + \mu' \Delta \sigma$

 μ は暗に間隙流体圧の変化なども含まれるが, 断層の摩擦状態や流体に関しては不明なことが多 いため,不確実性を最小にするために平均的な 0.4 を用いる場合が多い.なお,地震波通過による遠 地誘発地震でも(動的) Δ CFF が計算されること もあるため,地殻変動にともなう場合は,静的クー ロン応力変化(static Coulomb stress change) と明示されることが多くなった.

ΔCFF の正負は理論上, 断層運動の促進と抑制 に直結する. そのため, 地震活動の活発化と静穏 化が期待される地域を2分することができる. ま た, ΔCFF の絶対値はおおむね震源断層からの距 離とともに小さくなるが, 震源断層パラメータや 後述するレシーバ断層との位置関係によって変わ る.

地震活動に影響を与える ΔCFF 下限値につい ては、これまでのところ 0.1 bar が 1 つの目安に なっている (たとえば、Reasenberg and Simpson, 1992).

△CFF は通常, 食い違いの弾性論に基づく半無

表1 大阪府北部地震の震源断層モデル (気象庁, 2018)

		経度 [°]	緯度 [°]	上端深さ [km]	長さ [km]	幅 [km]	走向 [°]	傾斜 [°]	レイク [°]	すべり量 [m]	Mw
気象庁 (2018)	断層面 1 断層面 2	135.593 135.600	34.831 34.847	9.5 10	5 2	5 4	50 0	70 40	150 60	0.29 0.29	5.6

断層面1は横ずれ断層,断層面2は逆断層を示す.

図1 大阪府北部地震による東西走向右横ずれ断層(a)と南北走向逆断層(b)へのΔCFF. 深さ7~ 13kmでの最大値を表示. ±0.5bar (50kPa)で色飽和させていることに注意. レシーバ断層は 左上にビーチボール上の橙色線で表示. 括弧内は走向, 傾斜, すべり角 (レイク). 灰色線は活 断層分布(活断層研究会, 1991)

限弾性体(Okada, 1992)により計算される.入 カパラメータは,弾性体の挙動をコントロールす る弾性定数と震源断層モデル(位置,走向・傾 斜・すべり角,すべり量)である.本稿では弾性 定数については,ヤング率80GPa,ポアソン比 0.25とした.震源断層モデルは震源インバージョ ンや測地インバージョンから設定されることが多 い.今回は,詳細余震分布と発震機構から推定さ れた2つの断層からなる気象庁モデル(気象庁, 2018)を用いた(表1).なお,防災科学技術研 究所 F-netメカニズム解とスケーリング則を適用 した断層モデル(東北大学, 2018)についても比 較検討したが、結果にほとんど相違がなかった.

ー方、ΔCFF 計算とその評価にあたって、震源 断層モデル以上にレシーバ断層(receiver fault) の設定が重要となる.レシーバ断層とは、震源断 層による応力伝播によって影響を被る断層であ る.評価対象断層と言ってもよい.このレシーバ 断層の位置,形状、断層タイプ(横ずれ,逆断層, 正断層)によってΔCFF が大きく異なる.代表 的なレシーバ断層の設定とΔCFF 表示方法には 下記がある.

図 2 大阪府北部地震による周辺活断層へのΔCFF. 平面図(a)と南南西上空からの鳥瞰図(b). 仮定した傾斜とすべり角(レイク)を(a)に 記す.震源から遠方の断層は約10kmで区分 し,近傍の主要断層は約2×2kmに区分して 応力を計算した.断層面下端はすべて15km

(1) 同一の走向・傾斜・すべり角に対して *Δ*CFF を解き,評価地域全体をカラーコード化しマップ 表示する方法.

(2)対象地域のテクトニック応力場を仮定し、本 震による応力擾乱も含めて最適破壊面(optimally oriented fault)を選択し*Δ*CFFを解く方法.地 殻内のあらゆる破壊面を想定するので、小地震の 余震分布との対応を検討するのに適している.

(3) 活断層の地下での推定断層面とすべり角に直 接 ΔCFF を解き, 断層面上にカラーコードやコ ンター表示をする方法. (4) 中地震のメカニズム解節面をローカルな断層 代表と仮定して ΔCFF を解き, 震央やメカニズ ム解押し領域にカラー表示する方法.

今回は,(2)については応力場の仮定が容易で はないため計算を見送ったが,(1),(3),(4)に ついては,それぞれ図1,図2,図3に示した.

大阪府北部地震の震源域周辺は,主として東西 圧縮場にあるものの,活断層分布に表れているよ うに,横ずれ断層と逆断層が混在するのが特徴で ある.実際,震源域周辺の中小地震のメカニズム 解は多様である(たとえば,藤野・片尾,2009). そのことを考慮して,図1には有馬-高槻断層帯 と同走向の右横ずれ断層(図1a)と上町断層帯 と同様の南北走向東傾斜の逆断層(図1b)をレ シーバ断層に設定した.なお,余震活動や地震活 動度変化との比較の意味から,深さ7~13kmで の最大ΔCFFを採用している.

右横ずれ断層に対しては、震源を中心に十字状 に正の Δ CFFが広がる(図 la). Δ CFF>0.5 bar (50 kPa)の範囲は震源から10 km 強、 Δ CFF> 0.1 bar (10 kPa)は20 km 以内に収まる、逆断層 の場合は、 Δ CFF>0.5 bar の範囲は震源から10 km 弱以内に同心円状に分布する(図 lb).負の Δ CFF域は双方に共通して震源の西北西に広く分 布する.

図2には主要活断層の3次元的断層面に解い た Δ CFFを示す.遠方の活断層については,そ れぞれの活断層の中央部で Δ CFFを計算し,震 源近傍の有馬-高槻断層帯東部,上町断層帯,生 駒断層帯,京都西山断層帯については約2km× 約2kmの小断層に分割し Δ CFFを計算した.有 馬-高槻断層帯東部と上町断層帯北部はおおむね 正の Δ CFF,生駒断層は震源の深さによって正負 が入れ替わる.これらの Δ CFFは最大+8bar,最 小-24barとなるが,具体的な数値自体は震源断 層の位置と活断層の傾斜,計算格子間隔等でも変 わりうる.ただし,いずれも0.1bar以上の変化 は確実で,活断層沿いの地震活動に影響を与える のに十分とみられる.

図3には、防災科学技術研究所 F-net のメカニ ズム解に対して解いた ΔCFF を示す. これをみ

図3 1997年から本震前までの防災科学技術研究所 F-net メカニズム解両節面(a, b)に解いた ΔCFF. 押し領域にカラー表示.対象とした節面はビーチボール上の橙色線で示す

ると、図1にみられた傾向と同様に、常時地震活動の活発な北摂山地(丹波地域)がΔCFFの正 負で東西に2分される. 箕面市から東側では正の CFFが目立つ一方で、川西市から西側では負 のΔCFFが卓越する. この両地域よりも北側の 地域では、変化量は0.1 bar以下となり正負が混 在する.

3. 大阪府北部地震前後の地震活動度変化

大阪府北部地震による ACFF に対して、どの ように地震活動が応答したのだろうか.まず、本 震から約3カ月後の平成30年9月20日までの気 象庁一元化暫定カタログ(平成30年9月23日ダ ウンロード)を用いて、地震活動度変化をマッピ ングしてみた(図4).ここでは、半径2kmの円 形領域を1kmグリッドで移動させながら震源を 収集し、本震後の地震発生率(Ra)を本震前の 発生率(Rb)で除したものを表示した.活発化 を暖色系、静穏化を寒色系で示す、カーネル内に 入る地震数が少なく Ra, Rb どちらかを求めるこ とができない場合は、検知不能として灰色とした.

図 4 大阪府北部地震前後の地震活動度の変化.
 本震後の発生率(Ra)/本震前の発生率(Rb)を表示.気象庁一元化および暫定カタログ(2000年1月1日~2018年9月20日)を使用.震源深さは20km以浅,すべてのMについて解析

図 5 震央距離別の地震活動の時系列.a) 2016年以降の震央分布. 灰色は大阪府北部地震前,赤色は同地震後を示す.b) 2016年以降の半径 20~10km (マゼンタ)と半径 30~20km (青)内の地震数累積曲線

その結果,図1,図3に示した正のΔCFFに対応 する丹波地域東部で著しい活発化が確認された (図4の領域A).さらに、本震震源より西側の 有馬-高槻断層帯沿いや東側の生駒断層帯北部-京 都府南部付近でも顕著な地震活動の活発化がみら れる.一方で、地震後3カ月ながらΔCFF負に ともなう有意な静穏化(ストレスシャドウ,Harris and Simpson, 1998)が丹波地方(北摂山地)西 方(図4の領域B)で認められた.

次に,震源断層からやや遠方での地震活動応答 を調べるために,機械的に震央からの水平距離で 範囲分けを行い,2016年以降の時系列を累積曲 線として示した(図5).震源断層上の余震クラ スターを排除するために,大阪府北部地震の震央 (北緯34.844°,東経135.622°)から10kmの範囲 を除外し,そこから半径20kmのシリンダーの 範囲(R20-R10 km), さらに半径 30 km から 20 km の範囲(R30-R20 km) についての時系列を示している.これをみると, R20-R10 km については, 大阪府北部地震直後から 2 倍以上の地震活動の増加傾向が認められる.一方で, R30-R20 km については北部地震に対応する応答は認められないが, 累積曲線の勾配はやや増加している.

さらに、遠方で生じている地震活動の活発化を 具体的に確認するために、京都府南部(図4の領 域D)と大阪府中央部(図4の領域E)の時系列 を示した(図6).(北緯34.810°,東経135.800°) から半径10km,(北緯34.720°,東経135.570°) から半径10kmの範囲から震源を収集した.こ れをみると、両地域とも本震震央の余震クラス ターから分離されているにもかかわらず、本震以 降に発生レートが増加している.

図 6 遠方で生じている地震活動の変化. a) 2016年以降の震央分布. 灰色は大阪府北部地震前, 赤色 は同地震後を示す. 円内の震源を収集. b) 2016年以降の京都府南部(橙)と大阪府中央部付近 (紫) での地震数累積曲線

4. 議 論

前節で示したように、大阪府北部地震の震源断 層ごく近傍以外にも明瞭な地震活動の変化が生じ ている. ΔCFFですべてが説明できるわけではな いが、少なくとも、図4の領域A(北摂山地東 部)、領域B(北摂山地西部)における活発化と 静穏化は図1、図3で示したΔCFFの正負と対応 している. 一般に、本震直後には負のΔCFFに 対応した静穏化は顕在化しにくい(Toda *et al.*, 2013). おそらく北摂山地西部(領域B)では常 時地震活動が高いために静穏化が検知されたもの と思われる.

また, 京都府南部(図4の領域D,図6)も横

ずれ断層(図1a)であれば対応する可能性があ る.その場合,0.1~0.2 bar 程度のCFF 増加に応 答していることになる.大阪府中央部(図4の領 域E,図6)も逆断層型の小地震が発生している のかもしれない(図1b).いずれにしても,震央 から10~20 kmの範囲でも地震活動度の増加が 認められたことは特筆すべきである.現在のとこ ろ極小~小地震に限られるが,領域Dには京都 盆地-奈良盆地断層帯,領域Eには上町断層帯と 生駒断層帯がそれ存在する.これらの活断層 を刺激する,もしくは震源核形成を促進する可能 性が一時的に高くなったことが考えられる.

ΔCFFと地震活動,および大地震の連鎖性に関 する最近の研究から,大地震による周辺活断層の 影響については,活断層への直接的なΔCFFで

図7 △CFFによる活断層での大地震発生確率の 変化(遠田,2002に加筆).a) 評価対象活 断層における応力蓄積過程と近傍の大地震 による直接的影響.b)活断層近傍の地震活 動の活発化(震源核形成促進)による地震 発生確率の変化

はなく、周辺の地震応答による活断層深部への刺 激や地震核形成の促進が重要とされる (Dieterich, 1994 ; Stein et al., 1997 ; Parsons et al., 2000 ; 遠 田, 2002 など). 図 2 の *Δ*CFF 評価は依然重要で あるものの、応力変化への地震応答が鍵となる. 地震サイズ分布(Gutenberg-Richter 則における 傾き b 値)が一定の場合、小・中地震の発生率が 上昇すれば、大地震の発生率も上昇する、大地震 は小さな破壊(小地震)が雪崩を起こすようにし だいに大きくなったものと仮定すると、小地震が 増えるほど大地震につながる確率が高くなる(図 7). また、*Δ*CFF に反応した地震活動は大森-宇 津則に沿って減衰するが、その継続時間は震源域 周辺の歪速度に反比例することが理論 (Dieterich, 1994) と観測(たとえば, Toda and Stein, 2018) から示されている.プレート境界に比べて歪速度 の遅い日本列島内陸では、影響継続時間(余震継 続時間)は数年~数十年と推定されている.した がって、大阪府北部地震の震源から20km程度 の範囲では今後少なくとも数年以上は地震発生確 率の高い状態が続くと考えられる.

5. おわりに

大阪府北部地震は、地震規模の割に大都市直下 で発生したために顕著な被害に結びついた.ま た、活断層密集域に発生した M6 地震として、今 後の地震活動も含めて影響を無視することはでき ず、本稿に示したように実際に震央から 20 km 程度の範囲で地震活動に影響が出ている.

ところで, 地震活動の連鎖性や断層間相互作用 という視点から、今回の地震にはもう1つ興味深 い側面がある. それは、気象庁断層モデルに示さ れるように、横ずれ断層と逆断層が連動したこと である. 断層長がそれぞれ5km,2km であるが. 1桁大きくすると当該地域の横ずれ断層である有 馬-高槻断層帯と上町断層帯、もしくは生駒断層 帯に相当する、規模は違うものの、これらが連動 する可能性をも暗示しているように思える. 従来 の評価においては、このような断層変位センスの 異なる断層帯については、相互の影響や連動は考 慮されていない、しかしながら、世界的にみると、 同じ広域応力場のもと走向と変位センスの異なる 活断層が1つの大地震として連動した例はある (たとえば、1957年モンゴル、ゴビーアルタイ地震 Mw8.1 (Bayarsayhan et al., 1996); 2016 年ニュー ジーランド、カイコウラ地震 Mw7.8 (Hamling et al., 2017)). 今後, 活断層密集域では, 集団とし ての活断層評価の視点も重要となろう.

謝辞

本稿で実施した地震活動解析および応力計算で は、気象庁一元化震源カタログ(一部暫定),防 災科学技術研究所の F-net メカニズム解を使用さ せていただきました.記して感謝いたします.

参考文献

- Bayarsayhan, C., Bayasgalan, A., Enhtuvshin, B., Hudnut, K.W., Kurushin, R.A., Molnar, P. and Olziybat, M. 1996. 1957 Gobi-Altay, Mongolia, earthquake as prototype for southern California's most devastating earthquake. *Geology*, 23, 579–582.
- Dieterich, J.H. 1994. Constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res., 99, 2601–2618.
- 藤野宏興・片尾 浩. 2009. 琵琶湖西岸地域における 微小地震のメカニズムと応力場. 京都大学防災研究 所年報, **52B**, 275-284.
- Hamling, I.J. et al. 2007. Complex multifault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand. Science, 356. doi: 10.1126/science.aam7194
- Harris, R.A. and Simpson, R.W. 1998. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. J. Geophys. Res., 103, 24,439–24,451.
- Hujita, K. 1962. Tectonic development of the median zone (Setouti) of southwest Japan, since Miocene. J. Geosci. Osaka City Univ., 6, 103-144.
- 地震調査研究推進本部地震調査委員会. 2018a. 全国地 震動予測地図 2018年版. https://www.jishin.go.jp/ evaluation/seismic_hazard_map/shm_report/shm_ report 2018/
- 地震調査研究推進本部地震調査委員会. 2018b. 2018 年 6月18日大阪府北部の地震の評価. https://www. static.jishin.go.jp/resource/monthly/2018/20180618_ osaka.pdf
- 活断層研究会. 1991. 新編日本の活断層一分布図と資 料一.東京大学出版会,437 p.
- King, G.C.P., Stein, R.S. and Lin, J. 1994. Static stress changes and the triggering of earthquakes. *Bull. Seismol. Soc. Am.*, 84, 935–953.
- 気象庁. 2018. 大阪府北部の地震(M6.1)による周辺の地震に対する ΔCFF,大阪府北部の地震(M6.1)の断層パラメータ. 第319回地震調査委員会気象庁

資料, 66.

- Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space. *Bull. Seismol. Soc. Am.*, 82, 1018–1040.
- Parsons, T., Toda, S., Stein, R.S., Barka, A. and Dieterich, J.H. 2000. Heightened odds of large earthquakes near Istanbul : A interaction-based probability calculation. *Science*, **288**, 661–665.
- Reasenberg, P.A. and Simpson, R.W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. *Science*, 255, 1687–1690.
- Stein, R.S., Barka, A.A. and Dieterich, J.H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. *Geophys. J. Int.*, **128**, 594–604.
- 遠田晋次. 2002. 静的応力ステップ・応力速度変化を 考慮した地震発生確率予測. 地学雑誌, **111**, 233-247.
- Toda, S., Stein, R.S., Beroza, G.C. and Marsan, D. 2013. Aftershocks halted by static stress shadows. *Nat. Geosci.*, **5**, 410-413. doi:1010381/ngeo1465
- Toda, S. and Stein, R.S. 2018. Why aftershock duration matters for probabilistic seismic hazard assessment. *Bull. Seismol. Soc. Am.*, **108**, 1414–1426.
- 東北大学. 2018. 第 319 回地震調査委員会東北大学資料, 1-2.

遠田晋次

[とおだ しんじ]

現職 東北大学災害科学国際研究所教授 略歴 鹿児島大学理学部卒業.東北大学 大学院理学研究科前期博士課程修了. (財)電力中央研究所研究員,東京大学地

震研究所助手,(独)産業技術総合研究所活断層研究セ ンター研究員,京都大学防災研究所准教授を経て 2012 年 10 月より現職

研究分野 地震地質学

地震波干渉法とは何か

地震波干渉法(Seismic Interferometry)と は、2つの観測点で同時に観測した地面の振動 のデータの相互相関関数(2種類のデータの時 間を少しずつずらしながら互いの類似性を求め たもの)を計算し、それを用いて地下の地震波 速度などの構造を調べる手法である.この手法 のユニークな点は、地震に伴う地面の振動を用 いるのではなく、地震が起きていないときの地 面の振動、いわば地震波ノイズを用いるところ である.地面は、地震が起きたときだけ揺れて いるわけではなく、実は小さいながらもつねに 揺れ続けている.海洋波浪や風などの自然現 象、そして車や電車の往来、工場の稼働などの 人間活動が地面を振動させていると考えられて いる.

まず,地震波干渉法の原理を図1に基づき説明する.これは上から下を眺めた鳥瞰図で,▲ 印で示す2つの観測点が地面の上にある.これらの観測点の遠方で,これらの観測点をぐるりと取り囲むように複数のノイズ源が存在し,互いに無相関に(地震)波を放射していると仮定する.遠方のノイズ源からやってくる波が,2

図1 地震波干渉法の原理.2つの観測点(▲印) にさまざまな方向から波が入射する(矢印が 進行方向).そのうち波1,波2のように2 つの観測点を結ぶ方向に平行な方向から入射 する波が強められ、観測点1と観測点2の間 を伝わる波の速度を正しく測定できる

つの観測点に到達する時刻差は、波の入射する 角度に依存する.まず、2つの観測点を結んだ 方向に平行な方向からやってくる波1あるいは 波2の場合を考えよう、波1は、観測点1に先 に到達し、その後観測点2に到達する、その時 刻差は、2つの観測点間の距離を波の伝播速度 で割った値になる。波2は、観測点2に先に到 達し、その後観測点1に到達するが、到達時刻 差(の絶対値)は波1の場合と同じである。通 常は観測点間の距離が測量などですでに分かっ ているため、2つの観測点間の波の到達時刻差 を(相互相関関数を用いて)測定すると、2つ の観測点間を伝わる波の伝播速度を求めること ができる. そして, その結果に基づき地下構造 について解釈できる. しかしここで問題になる のは、ノイズ源はさまざまな方向にあるため、 波がさまざまな方向からやってくる点にある. たとえば、2つの観測点を結ぶ方向に直交する 方向からやってくる波3は、観測点1と2に同 じ時刻に到達する. つまり到達時刻差は0とな り、波の伝播速度は無限大というおかしなこと になる. これでは地下構造を正しく解釈できな い. 斜め方向からやってくる波4の場合は、到 達時刻差は0ではないが、波1や波2の場合よ りは小さくなってしまい、この場合も波の伝播 速度を正しく求められない. それでは、なぜ地 震波干渉法は実際に問題なく適用できるのだろ うか?実は、波1や波2のように2つの観測点 を結ぶ方向からやってくる波の場合は、入射す る角度が違っても2つの観測点への到達時刻差 はわずかしか変化せず. 強めあいやすいのであ る、そのため、いろんな方向から波がやってく る場合でも、波1や2の寄与が大きくなり、正 しく地下構造を推定できるわけである.ただし、 ノイズ源が偏って分布していて、2つの観測点 を結ぶ方向からの波がまったく存在しない場合 は、地下構造を正しく推定できないということ

が起きてしまうので、その場合は少し注意が必要である。

地震波干渉法と同様のアイデアは,著者の知 る範囲では古くは1950年代ごろから提案され ていたようであるが,近年の発展は1990年代 の日震学(太陽のガスの振動を調べる分野)や 物理探査(物理的な手法で地下を調べる)分野 での研究が契機になっている.地震学の分野で 初めて使われたのは2000年代に入ってからで ある.ダイナマイトや起震車などの人工震源を 必要としないため安価であり,さらに場所を選 ばないといった汎用性,地面の振動のデータの 相互相関関数を計算するだけでよいというデー タ解析上の簡便性,そしてそれなりに安定して 結果が求められる頑健性,など多くの利点か ら,地震学で広く利用されるようになり,現在 にいたっている.

地震波干渉法の適用例を見てみると、レイ リー波やラブ波のような表面波を使った手法に 基づいて地下構造が調べられることが多い.そ れは、ノイズ源は地表に多く存在するので、地 震波ノイズは表面波が卓越するためである.具 体的には、表面波は周期が長いと地下の深い部 分の影響を受け、周期が短くなるとより浅い部 分の影響を受けるという特徴を利用して、地面 の振動の周期ごとに表面波の伝播速度を推定 し、その結果を説明する地下の地震波速度の深 さ構造を推定する.さらに、地震波ノイズはつ ねに利用できるため、常時地下構造の推定を行 い、その時間変化を調べることも可能である. たとえば、火山噴火に先立って、火山下の地震 波速度構造が変化したという事例がこれまでに 世界の数カ所の火山で報告されている。 地震の 場合、著者の知る限り、地震前の構造の時間変 化についてはこれまでに報告されていないが、 地震後に地下の地震波速度が低下したという報 告は数多い、これは、大きな地震に伴う強い地 震動により地下の特に浅い部分が損傷を受けた ためであろう. また, 火山噴火や地震以外の期 間にも、地下構造が変化していることも報告さ れており、地下の応力や温度、含水量などの変 化を反映しているものと考えられている。 地震 波速度の変化は、このようにいくつかの物理的 要因を反映しているため、単純な解釈では説明 できないことも多いが、複雑な要因を丁寧に切 り分けて、特に地下の応力を反映した成分を抽 出する必要がある. そうすれば、地下の応力の 変化を監視できるようになり、それに基づい て、地震や火山噴火の切迫性を評価できるよう になるかもしれないからである。

地震波干渉法には他にもさまざまな利用法が 提案されている.近年では、地震波ノイズでは なく地震による振動ではあるが、その時間的に 後ろの部分(コーダと呼ばれ、地下の不均質に よって散乱されてきた波)を用いると、P波や S波のような実体波を抽出しやすいことも指摘 されている.そうすると表面波を利用するより も、地下の深い部分をより効果的に調べること が可能になると考えられる.地震波干渉法はま だまだ発展の可能性がある手法であり、今後も その進展に期待がもたれるところである.

(中原 恒:東北大学大学院理学研究科)

福井地震から70年

福井地震は1948年(昭和23年)6月28日 午後4時13分29秒に福井県坂井郡丸岡町(現 坂井市丸岡町)付近を震源として発生したマグ ニチュード7.1の地震で,福井市の震度は6と されたが,後に,その被害程度の大きさから, 気象庁は新たに震度7(激震,全壊率30%以上) を設け,1995年兵庫県南部地震で最初に適用 されたことは記憶に新しい.

この地震による死者は3,769人で,都市直下 型地震の犠牲者としては,阪神淡路大震災(関 連死を含む約6,434人)に次ぐ2番目の多さで あるが,被害が大きかった当時の福井市,現在 の坂井市およびあわら市の人口は合わせて15 万人前後と言われており,被害率は最も大きい 坂井市では5%に達するという未曽有の出来事 であった.また,住宅被害は堆積平野に集中し ており,全壊率は福井市で80%を超えた.

当時、筆者は5歳になったばかりであった。 地震発生のときは、市内を東西に流れる足羽川 を渡る重要な幸橋(当時も郊外から路面電車が 市内に乗り入れており、今も走っている)の北 詰の靴屋に母と姉とともにいた。突然、靴とい う靴がまるで雨のように降ってきた.外に飛び 出すと、目の前の電車のレールが1mくらい凸 字のように浮き上がるのを見た。筆者の家は幸 橋の南側の佐内町(福井藩の幕末の志士・橋本 佐内の墓がある佐内公園の近く)にあった.地 震時 22 歳だった兄によると、「ブーンという、 電線がうなる音が聞こえ、下から突き上げるよ うな揺れにおそわれた。軒並み家が倒壊し、足 羽山近くから幸橋やその向こうの福井駅もきれ いに見渡せた. 当時私は幸橋の南側で姉婿と木 工所を営んでいた. 屋根も壁も吹き飛び屋外に さらけ出され、近くの空井戸から泥水が吹き出 していた.各地から火の手が上がり、家財道具 を背負った住民がこちらに逃げてきた. みんな ボロボロで、着の身着のままだった|という。

靴屋から自宅に帰る(400mくらいの距離)途 中,両側の家屋が潰れて道を塞いでいたため, 大回りをして帰った記憶が,微かではあるが 残っている.

地震直後の状況はどうだったのか,筆者の記 憶にはないが,中学3年生(15歳)だった姉 によると,余震が頻繁に起きる中,潰れた家屋 の庭に板を敷き,蚊帳を釣って過ごした.その うち(たぶん1週間程度),廃材で簡単な6畳 ほどの小屋を建てて雨露を凌いだそうである. なお,今とは違って,避難所はもちろん,水, 食料等,外部からの援助はいっさいなかったと のこと.それもそのはずで,夕方の炊飯の準備 中(このとき,わが国はサマータイムを実施し ており,時刻は17時過ぎ)であったため,地 震とともに市内で多くの火事が起き,佐内町に 隣接する毛矢町もほとんど焼失し,誰もが他人 のことにかまってはいられなかったと思われる.

こうした生活がいつまで続いたか興味があ る.次の年の4月から姉は高校に入学したが、 学校には新しく建てた家から通ったと言ってい る.この家については、その後筆者も中学生頃 まで住んでいたので、少なくとも震災から9カ 月以内に普通の住家を建てるまでになっていた ことになる.一家族の情報とはいえ、その回復 の速さには改めて驚かされる.

ご承知の方も多いと思うが,福井市は終戦間 際の1945年7月19日に米軍の空襲を受け,市 の85%を焼失し,1,600人近い死者を出してい る.その傷も癒えない3年後に福井地震で再び 壊滅的な打撃を受け,さらにその1カ月後の7 月25日に,地震により被害を受けた九頭竜川 堤防の決壊により,市内のかなりの部分が冠水 し,浸水家屋7,000戸,被災人口約28,000人に 及んだ.その後も,台風による暴風,洪水のほ か,1962年度および1980年度の冬には市内で 2mに達する豪雪被害を被っており,県庁所在 地としては比較的多くの災害に見舞われた市で はないだろうか.

さて,福井地震から70年.この間にわが国 では多くの被害地震が発生している.筆者の独 断により主なものをあげると,以下のようであ る.カッコ内は被害の特徴.

- 今市地震: M6.2, 6.4, 1949/12/26, 死者
 10, 最大震度6 (山崩れ)
- +勝沖地震: M8.2, 1952/3/4, 死者 28, 不明5(1), 最大震度6(泥炭地被害)
- 新潟地震:M7.5, 1964/6/16, 死者26, 最大震度6(地盤液状化,石油タンク火災)
- 4) 十勝沖地震: M7.9, 1968/5/16, 死者 52, 最大震度5(鉄筋コンクリート造せん断 破壊)
- 伊豆半島沖地震: M6.9, 1974/5/9, 死者
 27,最大震度5(土木構造物被害,断層 出現)
- 6) 伊豆大島近海地震: M7.0, 1978/1/14, 死者 25, 最大震度 5(前震活動, 鉱滓流 出)
- 宮城県沖地震: M7.4, 1978/6/12, 死者 28, 最大震度5 (ブロック塀, 宅地造成 地域被害)
- 8) 日本海中部地震: M7.7, 1983/5/26, 死 者 104, 最大震度5(津波被害)
- 9) 長野県西部地震: M6.8, 1984/11/14, 死 者 29, 最大震度4(山崩れ)
- 釧路沖地震:M7.5, 1993/1/15, 死者2, 最大震度6(震源深さ100km,土木被害)
- 11) 北海道南西沖地震: M7.8, 1993/7/12, 死者 202, 不明 28, 最大震度 5(津波被害)
- 12) 兵庫県南部地震: M7.3, 1995/1/17, 死 者 6,434, 不明 3, 最大震度 7 (震災の帯, キラーパルス, 断層出現, 中間層破壊, ボランティア活動)
- 13) 鳥取県西部地震, 2000/10/6, M7.3, 死者0, 最大震度6強(高加速度記録)
- 14) 芸予地震, M6.7, 2001/3/24, 死者 2, 最 大震度 6 弱(石積, ブロック擁壁破壊)

- 15) 十勝沖地震, M8.0, 2003/9/26, 死者1, 不明1, 最大震度6弱(港湾施設被害, 土木被害, 石油タンク火災)
- 新潟県中越地震, M6.8, 2004/10/23, 死 者 68, 最大震度7 (震度7, 山崩れ, 土 砂崩れ, ライフライン被害, 上越新幹線 脱線)
- 17) 福岡県西方沖地震: M7.0, 2005/3/20, 死者1,最大震度6弱(離島被害)
- 18) 能登半島地震: M6.9, 2007/3/25, 死者 1, 最大震度6強(キラーパルス)
- 19) 新潟県中越沖地震: M6.8, 2007/7/16, 死者 15, 最大震度 6 強(キラーパルス, 地盤液状化, 地震動の焦点効果)
- 20) 岩手・宮城内陸地震:M7.2, 2008/6/14, 死者 17,不明 6,最大震度 6 強(トラン ポリン効果,山体崩れ,土砂崩れ,土石 流)
- 東北地方太平洋沖地震: M9.0, 2011/3/ 11, 死者 19,630, 不明 2,569, 最大震度 7(日本観測史上最大規模の地震, 大規 模津波被害, 原発事故, 地盤液状化, 前 震, 各地で誘発地震)
- 22) 熊本地震: M7.3, 2016/4/14~, 死者 269, 最大震度7(前震,本震,余震パターンの見直し,キラーパルス,山崩れ,土砂 災害,液状化,インフラ被害等)
- 23) 大阪府北部地震: M6.1, 2018/6/18, 死 者 5, 最大震度 6 弱 (ブロック塀崩落)
- 24) 北海道胆振東部地震: M6.7, 2018/9/6, 死者 41, 最大震度7(広域地滑り, 全道 ブラックアウト)

上記の各被害地震では、それまで知られてい なかった新しい現象や被害例などが生じてい る.たとえば、3)の新潟地震における砂地盤 の液状化現象、スロッシングによる石油タンク 火災、4)十勝沖地震では、コンクリート構造 物のせん断破壊(後に建築基準法の見直しがな された)、12)兵庫県南部地震では、盆地端部 生成表面波に起因する震災の帯、中低層ビルや

木造家屋の被害に繋がる周期1~2秒のキラー パルス地震動、鉄筋の段落としなどに伴うビル の中間層破壊や橋脚の座屈現象が発生した。キ ラーパルスは、その後18) 能登半島地震、19) 中越沖地震でも発生している。20) 岩手・宮城 内陸地震では、地表の上下動が約4,000 ガルと いう高加速度記録が観測され、いわゆるトラン ポリン効果として注目を集めたが、その後の研 究によると、この現象は表層地盤の「盤膨れ現 象|と解釈されている。21)東北地方太平洋沖 地震から7年半が経過した(2018年9月末時 点).いうまでもなくこの地震の最大の特徴は、 わが国の観測史上最大の規模であった。死者、 行方不明者合わせて 22,000 余という大規模な 津波被害をもたらし、メルトダウンという原子 力施設の深刻な事故を招き、さらに各地で被害

福井地震から北海道胆振東部地震までの約 70年間に24の被害地震が発生しており、その 平均発生間隔は3年弱である。自然災害は地 震・津波のみではない、台風や高潮,集中豪雨, 河川の氾濫等の被害もある。まことに、わが国 は災害の国というほかはない。

地震クラスの誘発地震も発生させた.

フランスの通信社の特派員として日本に長く 滞在し,最もアジア通と言われたロベール・ギ ラン氏(1908~1998)のインタビュー記事を紹 介して,この小稿を終えたい.インタビューは 兵庫県南部地震後にパリ郊外の老人ホームにお いて行われたものである.その主な内容を箇条 書きにまとめると次のようである.

- ・日本を理解する重要なカギの1つが地震だと
 思う.日本人の性格や、社会そのものが地震の影響を受けている。
- ・日本人はある日突然,地震ですべてがゼロに なると知っている.仏教で大事な「無常観」 という言葉は、フランス語にすれば「アンペ ルマナンス」(恒久普遍にあらず)だろうが、 フランスの辞書には見当たらない.
- ・日本人は地震も無常観で,普通に与えられた ものと受け止める.それはしかし,諦観では なく,次の行動へのステップである.
- ・東京大空襲のとき、私は五反田に住んでいた、人々はただちに立ち上がり、働きだした、
 地面に穴を掘り、トタン板や木片を集めて仮住まいを造った、金属片や材木類、紙などに仕分けた置き場ができた、警察や役所からの指導もないのに大衆が自主的に働いている、
 その復興の速さに驚いた、
- ・考えてみれば、地震の危険にさらされた、世界で最も壊れやすい大地に、世界で最も発達した産業、経済基盤が打ち立てられているというのは実に驚くべきことではないか。
 (澤田義博:(公財)地震予知総合研究振興会、名古屋大学名誉教授)

北海道東部沖の巨大地震の可能性

佐竹健治

1. はじめに

北海道東部の太平洋岸の沖合では、太平洋プ レートの沈み込みに伴って多くの地震が発生して いる. カムチャツカ半島沖から北海道南東沖まで 続く全長約2.000 kmの千島海溝は世界中でも地 震活動が高い地域であり、北部のカムチャツカ半 島付近では1952年11月にM9.0の超巨大地震が 発生した。千島海溝南部の北海道周辺でも M8 ク ラスの巨大地震が繰り返し発生し(図1).これ に基づいて、地震空白域とそれに基づく長期予測 の概念が1960年代に提唱された.これは、プレー ト境界の各領域では、同規模の巨大地震がほぼ-定(数十~数百年)の間隔で繰り返し発生し(固 有地震モデル), それらの巨大地震は比較的短期 間(地震活動期)に発生するというもので、地震 活動期にまだ地震が発生していない(短期間のう ちに発生が予測される)場所が地震空白域と呼ば れた.

地震調査委員会では、2003年3月に「千島海 溝沿いの地震活動の長期評価」を公表し、各領域 における今後30年間の発生確率を推定した。同 年の9月に発生した2003年十勝沖地震(M8.0) を受け、2004年12月には第二版を公表した。そ の後、2011年東北地方太平洋沖地震(M9.0)が 発生したこと、北海道東部において津波堆積物に 基づく古地震調査が数多く行われたことを受け、 2017年12月に第三版を公表した。13年ぶりに改 訂された第三版では、従来のM8クラスの巨大地 震に加えて、M9クラスの超巨大地震についても、 評価が行われた。

本稿では,まず千島海溝における巨大地震の長 期評価の歴史を振り返ったうえで,地震調査委員 会の長期評価について述べる.特に津波堆積物調 査に基づく超巨大地震の履歴の調査と、それに基 づく長期評価についてやや詳しく紹介する. なお 本稿では、関連する研究について、その詳細や文 献の引用は省略するので、興味を持たれた読者 は、地震調査委員会の長期評価(2003, 2004, 2017)や佐竹(2017)、高清水(2013)などを参 照されたい.

1. 千島海溝における大地震の繰り返しと 長期予測

1950年代から1970年代にかけて,千島海溝南 部から青森県東方沖で巨大地震が引き続いて発生 した(図1).それらは,西から,1968年青森県 東方沖(十勝沖地震と呼ばれる,M7.9),1952年 十勝沖地震(M8.2),1969年北海道東方沖地震 (M7.8),1958年択捉島沖地震(M8.1),1963年 択捉島沖地震(M8.1)である.

これらの巨大地震の震源域はほぼ重なっておら ず、またそれぞれの領域では19世紀にもやはり 巨大地震が発生していること(図1)から、宇津 (1972)は、日本海溝北部(八戸沖)から千島海 溝南部をA~Gの領域に区分した。そして、C領 域(根室沖)では20世紀に巨大地震が発生して いないことから、ここが(第1種)地震空白域で あると指摘した.さらに、巨大地震の繰り返し間隔 を90~109年とすると、根室沖において1972年 以降の30年間に巨大地震が発生する確率は40~ 57%と推定した。この発表の翌年に、1973年根 室半島沖地震(M7.4)が発生した.

その後の研究によって、1958年の地震はプレート間地震ではなく、沈み込むプレート内で発生した地震であったこと、1963年と1969年の巨大地震の余震分布はほぼ隣接していたことが明らかになった、すなわち、図1のE領域は存在せず、D

領域の隣はF領域であることがわかった. そこ で,地震調査委員会(2003)は,「千島海溝沿い の地震活動の長期評価」において,北海道太平洋 岸の千島海溝を西から十勝沖,根室沖,色丹島沖, 択捉島沖に分けた. 十勝沖では1843年(M8.0) および1952年(M8.2)に,根室沖では1894年 (M7.9)および1973年(M7.4)に同様な巨大地 震が発生したとみなし,両地域における30年間 のM8クラスの地震の発生確率を,十勝沖60%

図 1 千島海溝沿いの巨大地震の震源域と発生年. 宇津(1972)は根室沖(領域 C)が(第1種) 地震空白域であると指摘した. M はその後 改訂されているものもある(図2参照)

程度,根室沖20~30%(2003年1月1日時点) と推定した.地震の発生確率の計算には,固有地 震モデルに基づいて,BPT(Brownian Passage Time)と呼ばれるモデルが使われた.このモデ ルでは地震がほぼ一定の間隔で繰り返し発生する と仮定しているため,ある時点から一定の期間内 に次の地震が発生する確率は,地震の発生直後は 低く,次の地震に向けて毎年上昇してゆく.

この長期予測が公表された半年後の2003年9 月26日に、十勝沖地震(M8.0)が発生したが、 この震源域は、ほぼ釧路海底谷の西側に限られて おり、1952年の津波波源域よりも小さかった. そこで、地震調査委員会(2004)では「千島海溝 沿いの地震活動の長期評価(第二版)」において、 「十勝沖」の範囲を2003年十勝沖地震の震源域の みに限定し、1952年地震の津波波源域の一部で ある厚岸沖は「根室沖」と考え、両地域における 30年間のM8クラスの地震の発生確率をそれぞ れ0.02~0.5%、30~40%(2005年1月1日時点) と推定した.

2003年十勝沖地震の直後に,1952年十勝沖地 震の余震分布や地震波の解析が見直され,1952 年の震源域は2003年地震と同様に,釧路海底谷 よりも西側の十勝沖だけであったと指摘された.

図 2 千島海溝沿いで17世紀以降に発生したプレート間巨大地震の時空間分布.実線・破線・?の 順で信頼性が低下する.地震調査委員会(2017)

ところが、津波高の比較や津波波形解析、さらに は最近の地震波解析によると、1952年の震源域 や津波波源域は、釧路海底谷東側の厚岸沖まで伸 びていたようであることが分かってきた。

1894年(明治29年)の根室沖地震は,津波高 分布がよく似ていることから1973年根室半島沖 地震と同様な地震であるとされていたが,鮎川で 記録された津波波形の比較およびシミュレーショ ンに基づくと,1973年の地震よりも西の厚岸沖 まで伸びていたと推定されている.

1843年(旧暦天保十四年)の地震については, 厚岸湾を中心とする津波高分布が1952年十勝沖 地震とよく似ていることから,十勝沖の地震とさ れてきたが,さらに東側では1973年根室半島沖 地震の津波高分布とも似ており,波源域は根室沖 にまで伸びていたようである.

これらの津波高分布や波形の解析から,千島海 溝沿いを十勝沖(釧路海底谷以西),厚岸沖,根 室沖と分けると,19世紀以降の津波波源域は以 下のように整理される.2003年十勝沖地震の波 源域は十勝沖のみ,1973年根室半島沖地震は根 室沖,1952年十勝沖地震は十勝沖および厚岸沖, 1894年地震は根室沖および厚岸沖,1843年地震 は,厚岸沖を中心に,東は根室沖,西は十勝沖ま で伸びていたと考えられる.

このように、厚岸沖は、あるときは十勝沖とと もに、あるときは根室沖とともに破壊したようで ある.したがって、厚岸沖は、十勝沖と根室沖の 境界領域ということができる.従来は、沈み込み 帯は十勝沖・根室沖と明確なセグメントに分か れ、そこで一定の間隔で同様な規模の地震(固有 地震)が繰り返すと考えられていたが、繰り返す 地震には多様性があることが明らかとなってきた.

そこで、地震調査委員会が2017年12月に公表 した第三版では、過去の地震の震源域は同じでな く多様性があるとして、従来の十勝沖・根室沖に 加えて、根室沖の両側に境界領域を設定した。ま た、色丹島沖・択捉島沖については統合して評価 した.この他、これまで考慮されていなかった、 海溝軸付近の津波地震や、海溝軸外側の正断層地 震についても評価した。これらの領域についての 長期評価(規模と今後30年間の発生確率)を表 1にまとめる。

3. 北海道東部における古地震調査

海岸付近の地質調査から,過去の地震による地 殻変動や津波によって運ばれ堆積した砂層(津波

評価対象地震	発生領域	規模	確率
超巨大地震(17世紀型)	十勝沖から択捉島沖 (根室沖を含む)	M8.8 程度以上	7~40%*
プレート間巨大地震	十勝沖 根室沖 色丹島沖および択捉島沖	M8.0~8.6 程度 M7.8~8.5 程度 M7.7~8.5 前後	8%* 80% 程度* 60% 程度
ひとまわり小さいプレー ト間地震	十勝沖および根室沖 色丹島沖および択捉島沖	M7.0~7.5 程度 M7.5 程度	80% 程度 90% 程度
海溝寄りのプレート間地 震(津波地震等)	十勝沖から択捉島沖の 海溝寄り	Mt8.0 程度	50% 程度
沈み込んだプレート内の 地震	やや浅い領域 やや深い領域	M8.4 前後 M7.8 程度	30% 程度 50% 程度
海溝軸外側の地震	千島海溝の海溝軸外側	M8.2 前後	不明

表1 千島海溝の地震の長期評価

地震調査委員会(2017)に基づく. 確率値は2018年1月1日現在.*BPT 過程 (固有地震モデル)を仮定しているため. 確率値は毎年更新される 堆積物)を調べ,巨大地震の発生履歴を明らかに する研究は,1980年代後半に北米の太平洋岸(カ スケード沈み込み帯)で始められた.ここでは, 海洋プレートが沈み込んでいるにもかかわらず, 巨大地震の発生がしられていなかったが,文献資 料は1850年代からの150年程度に限られていた ため,それ以前(先史時代)の地震の履歴を調べ るために地質学的な手法がとられた.

このような古地震研究はその後全世界に広が り,1990年代後半からは北海道でも津波堆積物 の調査がさかんに行われるようになった.北海道 東部の太平洋岸は、沿岸部に湿原や湖沼があり人 工改変も進んでいないことから、津波堆積物の調 査には適しており、主に北海道大学・北海道地質 研究所のグループ、産業技術総合研究所(産総研) のグループによって調査が行われてきた.その結 果、17世紀に東北地方太平洋沖地震と同じよう な M9 クラスの地震が発生していたことが明らか になった.

北海道浜中町の霧多布湿原(図3)では,1952 年十勝沖地震津波や1960年チリ地震津波の際に は、津波が海岸から1~2km程度まで遡上し、

図3 霧多布湿原における17世紀の津波堆積物の 分布(○).1952年十勝沖地震による実際の 浸水域および17世紀型の超巨大地震(プ レート間連動型)から計算された津波の浸水 域も示す.Nanayama et al. (2003)に基づく

大きな被害をもたらした.地質調査の結果,湿原 の泥炭層の中に火山灰層とともに何枚もの砂層が 挟まっているのが発見され,これらの多くは 1952年や1960年の津波浸水域よりもずっと内陸 の,湿原の縁まで達していた(図3).これらの 砂層は,微生物(ケイ藻)化石の分析から,海か ら運ばれてきた砂であることが確認された.この うち最上位の砂層(K2)は,17世紀に噴火した 北海道南部の駒ケ岳や樽前山からの火山灰層の直 下に位置していることから,17世紀中ごろに堆 積したと考えられる.すなわち17世紀に,海岸 から数kmまで砂を運ぶような巨大な地震が発生 したことが明らかになった(Nanayama *et al.*, 2003).

17世紀の砂層の下位には10世紀頃の火山灰層 との間にもう1枚の砂層(K3)が,10世紀頃と 約2,500年前の火山灰層との間には4枚の砂層 (K4~K7)が,さらに下位にも砂層(K8,K9)が 発見された(図4).10世紀以降に2枚,過去2,500 年間に6枚の津波堆積物層が発見されたことか ら,これらの津波の発生間隔はおよそ500年とさ れてきた.火山灰層に加えて,泥炭層中の炭化物 (図4aの黒丸)の放射性炭素年代を測定し,それ ぞれの砂層の堆積年代を推定(図4b)したとこ ろ,再来間隔は100~800年とばらつき,その平 均は約400年であることが明らかとなった (Sawai *et al.*, 2009).

霧多布以外の北海道太平洋沿岸の湿原や湖沼に おいても、17世紀およびそれ以前の津波砂層が 発見され、海岸から数kmまで追跡された.また、 同様な津波堆積物は海岸段丘上や段丘崖でも発見 されており、それらの標高から、17世紀の津波 の沿岸での高さは、十勝から根室の海岸で15~ 20mと推定されている(平川、2012).

さらに、釧路市春採湖底の柱状試料からも、過去 7,000年間に15枚程度の津波堆積物が見出され た.この柱状試料については、17世紀の津波堆 積物と1667年樽前山噴火の火山灰の間に31枚の 縞模様が見られ、この縞模様が毎年の変動を表す ないたいう報告がある(石川ほか,2012).

図 4 (a) 霧多布湿原における地表から地下1mまでの地層断面. 泥炭層の中に津波の砂層,火山灰層が挟まっている. 黒丸は年代測定試料の採取位置. (b) 年代測定による津波砂層の発生年代の推定値. 四角形は標準偏差の幅,その外に伸びる線分は標準偏差の2倍を示す. (c) (b) のデータに基づき5個の地震をランダムに多数発生させた際の,平均発生間隔(横軸)とばらつきのパラメータ(a,縦軸)の分布. コンターの中心(▲)が最頻値を示す. (d) ランダムに発生させた時系列から計算される今後30年間の発生確率の分布. 点線は95%の信頼区間(7~37%)を示す. (a),(b) は Sawai et al. (2009)を,(c),(d) は地震調査委員会(2017)を簡略化

図5 北海道太平洋岸の津波浸水履歴図. 産総研 地質調査総合センターから 2004 年に出版さ れた. CD-ROM には、霧多布湿原の他、5 カ所における津波堆積物の分布、津波数値 シミュレーションによる浸水域の図面の他、 産総研による津波堆積物調査の報告書や津 波浸水のアニメーションなどが含まれてい る

これらの津波堆積物の分布およびそれから推定 される津波の浸水域については,産総研の津波堆 積物調査結果の報告書とともに「北海道太平洋岸 の津波浸水履歴図」としてまとめられ、2004年 に数値地質図シリーズとして刊行された(図5).

さらに、中央防災会議の「日本海溝・千島海溝 周辺海溝型地震に関する専門調査会」(平成15~ 18年)においては、17世紀に発生したような巨 大津波は、「500年間隔地震」として取り上げら れ、被害想定や被害軽減対策がとられた.たとえ ば、釧路市では、500年間隔地震を想定した津波 ハザードマップが東日本大震災の前に作成されて いた.

4. 17世紀型超巨大地震の規模とモデル

古地震調査の結果,17世紀には,根室~十勝 の約200kmの沿岸で,20世紀の地震よりも大き な津波が発生し,沿岸で10m以上の高さ,海岸 から数kmまで浸水したことが明らかになった. また,同様な調査から,ほぼ同時期に,沿岸での 隆起(0.5~1m)が発生したことも分かった.

図6 断層モデルによる海底地殻変動(上下成分). 黒枠は断層面の地表投影.実線と破線のコンターはそれぞれ隆起と沈降を示す.単位はm.(a)大規模地震,(b)津波地震,(c)プレート間地震の連動,(d)プレート間連動地震と津波地震との同時発生.Satake et al. (2008)および Ioki and Tanioka (2016)に基づく

これらの観測事実を説明するために、17世紀 の地震の断層モデルとして、いくつかのタイプの 地震が検討された(図6).(a)大規模断層地震は、 17世紀に発生した海岸の隆起を説明するために、 海溝付近からプレート境界の深さ85km まで延 びる大規模断層(幅250km)である。(b) 津波 地震は、海溝軸付近の比較的狭い断層面上(深さ 0から15km程度)のすべりである.(c)十勝 沖・根室沖のプレート間地震の連動は、1952年 十勝沖地震と1973年根室沖地震の震源域を合わ せた領域を震源とするものであり、断層面のすべ り量は十勝沖で10m,根室沖で5m,深さは15~ 50km 程度である、通常のプレート間地震と津波 地震が同時に発生した例はしられていなかった が、2011年東北地方太平洋沖地震はこれらの両 方が同時に発生したと考えられることから.(d) プレート間地震と津波地震の同時発生モデルが提 案された(Ioki and Tanioka, 2016). このモデル での海溝軸付近のすべりは25mと非常に大きい. これらの断層モデルによる,地表における上下 変位を図6に示す.大規模断層モデルでは,隆起 域が内陸まで延び,霧多布などの太平洋岸で約 1mの隆起となる.津波地震の上下変動は,海溝 付近のみに限定される.プレート間地震が連動し た場合には,太平洋沿岸は0.6m程度沈降する. プレート間連動地震と津波地震との同時発生モデ ルは,2011年東北地方太平洋沖地震と同様に, 海溝付近で大きく(10m以上)隆起する.

これらを初期値として津波の発生・伝播を計算 し、北海道沿岸での津波高さと沿岸での浸水域 を、津波堆積物の分布と比較した.霧多布湿原 (図3)では、プレート間の連動地震から計算し た浸水域が、観察された津波堆積物の分布をよく 再現できている.大規模断層モデルの場合、海岸 線も隆起するため、津波が内陸まで浸水しにく い、津波地震モデルは、波源の波長が短いため、 沿岸に到達する津波の周期が短く、やはり内陸ま で浸水しない.

北海道沿岸での津波の高さを図7に示す.北海 道沿岸では、プレート間連動地震と津波地震の同 時発生モデルによる沿岸の津波高が10~25mと 最も高く、プレート間連動地震(6~10m)、大規 模断層(~4m)の順に小さくなる.大規模断層 地震の場合、海岸も隆起するため(図6)、実質 的な水位上昇量は小さい.津波地震については、 釧路付近では2m程度だが、厚岸付近では10m を超えるなど、局所的な変動が大きい.図には、 段丘上の津波堆積物の高さの最大値も示した.こ れらを再現できるのは、プレート間連動地震と津 波地震の同時発生モデルだけであることから、こ のモデルが17世紀型超巨大地震のモデルとして 採用された.地震の規模はMw 8.8以上とされた.

5. 超巨大地震の発生確率

17世紀型の超巨大地震は平均約400年間隔で 繰り返し発生し,最新の発生時期(1637年頃) からすでに400年近くが経過していることから, 切迫性は高いと考えられる.一方で,津波堆積物 に基づく,過去の津波の堆積時期については,大

図7 断層モデルから計算された北海道東部太平洋岸における津波高. Satake et al. (2008), Ioki and Tanioka (2016) に基づく. 段丘上で発見された 17 世紀の津波堆積物の高さ(平川, 2012) も示す

きな不確定性がある (図4). そこで, 地震調査 委員会 (2017) では以下のようにして, 将来の発 生確率を計算した.

霧多布および藻散布で記録された津波堆積物の うち、17世紀型巨大地震であると考えられるも の(霧多布の場合は図4のK4~K8の5つ)を選 び、発生確率の計算に用いた、これらの地震につ いては、その発生時期が誤差とともに推定されて いる(図4b)ことから、その標準偏差に基づい て、確率密度関数を仮定した。その確率密度関数 に基づいて乱数を発生させ、それぞれの地震の発 生年を選び、5個の地震の発生履歴を作成した. この履歴から、平均発生間隔および BPT 分布の ばらつきのパラメータ(α)を最尤法で決定した. これを数十万回繰り返し、平均発生間隔およびば らつきの分布、さらにはそれらから計算される今 後30年間に発生する確率の密度分布を計算した. 霧多布の場合、平均発生間隔は375年、αの最頻 値は 0.49 であった (図 4c). 平均発生間隔は 500 年より短く, ばらつきのαは十勝沖や根室沖の巨 大地震の確率計算(表1)で使われた値(十勝沖 は0.38、根室沖は0.22)よりも大きい、今後30 年間に発生する確率(図4d)については、最頻 値は10%程度であるが,ばらつきが大きく,95% の信頼区間は7~37%となった. 藻散布での結果 と合わせて,17世紀型超巨大地震が今後30年間 に発生する確率は7~40%とされた.

6. まとめ

地震調査委員会は2017年12月に「千島海溝沿 いの地震活動の長期評価(第三版)」を発表した. 2003年3月に第一版を公表後,2003年9月に発 生した十勝沖地震(M8.0)を受けて,2004年12 月に第二版を公表して以来,13年ぶりの改訂で あった.この間,北海道東部において進展した津 波堆積物に基づく古地震調査ならびに2011年東 北地方太平洋沖地震(M9.0)が発生したことを 考慮した.

M8 程度を超えるプレート間巨大地震について は、過去の地震の震源域は同じでなく多様性があ ることから、十勝沖・根室沖の他に境界領域を設 定した.また、色丹島沖・択捉島沖については統 合した.今後 30 年間に地震が発生する確率は、 十勝沖では 8%、根室沖では 80% 程度、色丹島お よび択捉島沖では 60% 程度と推定された、十勝 沖に比べて根室沖の確率が高いのは,前回の地震 がそれぞれ 2003年,1973年であったことによる.

また,ひとまわり小さいプレート間地震や,沈 み込んだプレート内の地震の他,これまで考慮さ れていなかった,海溝軸付近の津波地震や,海溝 軸外側の正断層地震についても評価した.海溝軸 外側の正断層地震については,過去の事例がない ことから,確率値は推定できなかったが,それ以 外のタイプの地震については,今後30年間に発 生する確率は30~90%と高い値となった.

超巨大地震(17世紀型)については、霧多布 湿原、藻散布沼における津波堆積物調査に基づ き、今後30年以内に発生する確率を7~40%と 算定した.その規模は、東北地方太平洋沖地震の ような海溝軸付近に大きなすべりを想定したモデ ルに基づき、M8.8 程度以上と推定した.

参 考 文 献

- 平川一臣. 2012. 千島海溝・日本海溝の超巨大津波履 歴とその意味:仮説的検討. 科学, **82**, 172-181.
- Ioki, K. and Tanioka, Y. 2016. Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data. *Earth Planet. Sci. Lett.*, 433, 133–138.
- 石川 智・鹿島 薫・七山 太・重野聖之. 2012. 北 海道釧路市春採湖の湖底コアから推定される 17 世紀 前半の津波堆積物の年代. 日本地球惑星科学連合 2012 年大会予稿集, MIS25-P16.
- 地震調査委員会. 2003. 千島海溝沿いの地震活動の長 期評価について. http://www.jishin.gojp/main/chousa/ kaikou_pdf/chishima.pdf
- 地震調査委員会. 2004. 千島海溝沿いの地震活動の長 期評価(第二版) について. http://www.jishin.go.jp/ main/chousa/kaikou_pdf/chishima2.pdf
- 地震調査委員会. 2017. 千島海溝沿いの地震活動の長

期評価(第三版). https://www.jishin.go.jp/main/ chousa/kaikou_pdf/chishima3.pdf

- Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B.F., Shigeno, K. and Yamaki, S. 2003. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. *Nature*, **424**, 660– 663.
- Satake, K., Nanayama, F. and Yamaki, S. 2008. Fault models of unusual tsunami in the 17th century along the Kuril trench. *Earth Planets Space*, **60**, 925–935.
- 佐竹健治. 2017. 17世紀に千島・日本海溝で発生した 巨大地震. 東京大学地震研究所彙報, **92**, 31-47.
- Sawai, Y., Kamataki, T., Shishikura, M., Nasu, H., Okamura, Y., Satake, K., Thomson, K.H., Matsumoto, D., Fujii, Y., Komatsubara, J. and Aung, T.T. 2009. Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. J. Geophys. Res., 114, B01319. doi. 10.1029/2007JB005503
- 高清水康博. 2013. 北海道の津波堆積物研究の現状と 課題:17世紀巨大津波による堆積物の研究を中心に. 地質学雑誌, **119**, 599-612.
- 宇津徳治. 1972. 北海道周辺における大地震の活動と 根室南方沖地震について. 地震予知連絡会会報, 7, 7-13.

佐竹健治

[さたけ けんじ]

現職 東京大学地震研究所教授,東京大 学地震火山史料連携研究機構長 **略歴** 1984 年北海道大学大学院理学研

究科修士課程修了, 1985年東京大学大

学院理学系研究科博士課程中退,東京工業大学理学部 教務職員,米カリフォルニア工科大学客員研究員,ミ シガン大学助教授,地質調査所主任研究官,産業技術 総合研究所主任研究員を経て,2008年より現職 研究分野 巨大地震・津波に関する地球物理学的・古 地震学的・歴史地震学的研究

福島県で節目を迎えた自然災害 —1888 年磐梯山噴火と 1938 年福島県東方沖地震—

室谷智子

1. はじめに

今年2018年は、1月から3月にかけての豪雪、 6月18日の大阪府北部の地震、6月28日から7 月8日にかけての「平成30年7月豪雨」、9月6 日の「平成30年北海道胆振東部地震」など、甚 大な被害を生じた災害が続いた、また、1948年 福井地震から70年、1968年十勝沖地震から50 年、1978年宮城沖地震から40年、2008年岩手・ 宮城内陸地震から10年、と多くの地震の節目の 年でもある、本稿では、発生から130年を迎えた 1888年磐梯山噴火、80年を迎えた1938年福島県 東方沖地震と、福島県を襲った2つの災害につい て紹介する。

2. 1888 年磐梯山噴火

福島県には, 吾妻山, 安達太良山, 磐梯山, 燧ヶ 岳(ひうちがたけ), 沼沢の5つの活火山がある (図1). このうち吾妻山, 安達太良山, 磐梯山は, 気象庁が火山活動を24時間体制で監視する常時 観測火山に選定されている. その中の1つである 磐梯山が1888年(明治21年)7月15日7時45 分ころ, 凄まじい轟音とともに水蒸気爆発による 噴火を起こした. 噴火直前の7時頃から鳴動が続 き,7時半頃からは数回強いゆれを伴う地震も続 いた(関谷, 1888).1週間ほど前から鳴動や地 震があったようだが, 誰もそれが噴火の前兆とは とらえていなかったようである. 噴火は一度では 収まらず, 繰り返した噴火によって崩壊した山体 (小磐梯)は, 岩屑(がんせつ)なだれとなって 集落を襲い,5村11集落が完全に埋没するなど,

30 — 地震ジャーナル 66 号 (2018 年 12 月)

死者 460 名を超えるという被害を生じた(中央防 災会議, 2005).この噴火は日本が近代国家になっ て初めて遭遇した大規模災害であり,本格的に政 府や大学研究者によって災害直後に被害調査が行 われた最初の災害ということになる.また,明治 以降の日本で最も被害が大きい火山噴火でもある.

当時はまだ火山学が確立しておらず 帝国大学 理科大学の地震学教授であった関谷清景が、同じ く理科大学の菊池 安や、工科大学の戸谷亥名蔵 とともに現地調査を行った。 工科大学のお雇い外 国人技師として来日し、写真家でもあったイギリ ス人のウィリアム・バートン(William Kinninmond Burton)も同行して現地調査に赴き、村の被害 の様子や火口周辺の噴煙や噴石などの写真を撮影 している. 関谷やバートンによって書かれた報告 (たとえば、関谷、1888; Sekiva and Kikuchi, 1889) に掲載されたスケッチは、調査時の写真から描か れたものと思われ、海外での火山研究にも影響を 与えている(中央防災会議, 2005). スケッチの もとになった写真が含まれる幻灯写真が国立科学 博物館に残っており(写真1), 関谷が調査後に 一般向けの講演を行った際に使われたものと思わ れる.国立科学博物館所蔵の磐梯山噴火の写真に ついては、大迫ほか(2003)に詳しく述べられて いる. 日本国内に広く写真が普及し始めた頃に発 生した1888年磐梯山噴火の写真は、日本で最初 の火山噴火写真であり、多くの人が撮影したよう である. 各所に残されている写真や出版物につい ては、中央防災会議(2005)に詳しくまとめられ ている.この報告書には掲載されていない「福嶋 縣下耶麻郡磐梯山噴火之圖」(届人 佐藤重兵工, 岩代国信夫郡福島町),「磐梯山噴火略圖」(印刷 著作兼発行者 並川善六,下谷区元黒門町)の2

写真 1 左:国立科学博物館に残る幻灯写真. 中:噴口内岩石. W. Burton 撮影. Sekiya and Kikuchi (1889) にスケッチが掲載されている. 右:蒸気噴吐,土石流出,遠望. 関谷(1888) にスケッ チが掲載されている. 大迫ほか(2003) には,左右反転して写真が掲載されているが,ここで はスケッチに合わせている

写真 2 噴火被害の様子を描いた絵図. 左:「福嶋縣下耶麻郡磐梯山噴火之圖」(届人 佐藤重兵工). 右:「磐梯山噴火略圖」(印刷著作兼発行者 並川善六).ともに国立科学博物館蔵

枚の絵図を最近入手したので紹介しておく(写真 2).前者には噴火による山崩れで檜原村が湖に なってしまった様子が描かれており,後者には東 京で出版したためか,被害の程度を知らせる文章 も書かれている.

この大規模な噴火によって甚大な被害が生じた 一方で、山体崩壊により磐梯山の北側に五色沼が 形成されるなど、現在では福島県内でも有数の観 光地となっている.しかし、北から磐梯山を望む と(裏磐梯)、今でも生々しい噴火の傷跡を見る ことができる.磐梯山は2011年に日本ジオパー クに認定されている.

3. 1938 年福島県東方沖地震

福島県沖で,1938年(昭和13年)11月5日 17時43分(M_{jma}7.5),19時50分(M_{jma}7.3),6 日17時53分(M_{jma}7.4),7日6時38分(M_{jma}6.9) と3日間で立て続けに4つのマグニチュード (M)7クラスの地震が発生した.半年前の5月 23日16時18分には、これらの震源域の南に接 するように、茨城県沖で M_{jma}7.0の地震も発生し ている、本稿では、この茨城県沖の地震も含めて
一連の福島県東方沖地震(イベント1~イベント
5)とする(表1,図1,2).

5月の地震により、茨城県や福島県で煙突が折 れるなどの軽微な被害があり(竹花・副田 1938), 11月の地震により、福島県内で死者1名、 負傷者9名,建物全壊20棟,半壊71棟,宮城県 や茨城県でも微小な被害があった(中央気象台地 震掛, 1940). 最大震度5を観測したのは, 5月 23日のイベント1では茨城県と福島県, 11月5 日のイベント2では宮城県,福島県,茨城県の広 範囲、イベント3では宮城県と福島県、11月6 日のイベント4では福島県であった。11月7日 のイベント5では、宮城県から茨城県にかけて震 度3の領域が広がった、震源が陸から離れている ためか、津波による被害はなかった、岩手県沿岸 から茨城県沿岸において、全振幅 (peak to peak) で数十 cm の津波が観測され (Iida, 1956), イベ ント2の花淵、鮎川、小名浜、イベント4とイベ

図 1 福島県周辺の地震(灰丸は1923年から2017 年のマグニチュード5以上の地震,黒丸は マグニチュード7以上の地震)と火山(黒 三角) ント5の鮎川だけが,全振幅で1mを超えた(表 2).

M7クラスの地震が複数発生したということで、余震の数も多かったようである.11月と12 月だけで1,600回もの余震が発生し、そのうち有 感地震は323回観測されている(中央気象台地震 掛、1940).1938年5月23日から1年間で、14

図2本稿で紹介している地震と観測点分布.星は1938年と2014年、2016年の地震の震央.1938年の5つの地震のメカニズム解はAbe(1977)、2014年のメカニズム解は気象庁CMT解、2016年のメカニズム解はMurotani and Stake(2017)の遠地実体波インバージョン解析による。白三角は、地震観測点、灰色の丸、三角、四角は津波観測点

	発生日時*	震源*	深さ*	${\rm M_{jma}}^{*}$	$\rm M_w \ (USGS)$	メカニズム
イベント1	1938/05/23 16:18	141.3° E, 36.6° N	0.0 km	7.0	7.7	逆断層#
イベント 2	1938/11/05 17:43	141.9°E, 36.9°N	43.0 km	7.5	7.8	逆断層#
イベント 3	1938/11/05 19:50	141.5°E, 37.4°N	30.0 km	7.3	7.7	逆断層#
イベント 4	1938/11/06 17:53	141.9°E, 37.4°N	10.0 km	7.4	7.7	正断層#
イベント 5	1938/11/07 06:38	142.3° E, 37.0° N	5.0 km	6.9	7.6	正断層#
	2014/07/12 04:22	142.3°E, 37.1°N	33.0 km	7.0	6.5	正断層*
	2016/11/22 05:59	141.6° E, 37.4° N	24.5 km	7.4	6.9	正断層*

表1 福島県沖で発生した M7 クラスの地震

*気象庁カタログによる値. #Abe (1977) による値

	イベント1	イベント2	イベント4	イベント5	2014 年#	2016 年
八戸	22 cm	24 cm	15 cm	33 cm	_	_
石巻	9 cm	35 cm	10 cm	6 cm		—
花淵	45 cm	113 cm	85 cm	118 cm		—
鮎川		105 cm	126 cm	125 cm	42 cm	127 cm
宮古		42 cm	21 cm	_		53 cm
小名浜	83 cm	107 cm	40 cm	50 cm		101 cm
銚子	18 cm	28 cm	14 cm	15 cm	_	19 cm

表 2 主な検潮所での津波の最大全振幅(1938年は Iida(1956)から抜粋)

*イベント3はイベント2の2時間後に発生した地震のため、津波の分離が難しい. *気象庁報道発表資料(平成26年7月12日)より読み取り

図3 近地地震波形を用いたインバージョン解析 から得られたイベント1,2,3の低角逆断 層地震のすべり分布(室谷ほか,2004).コ ンター間隔は1m.三角と丸は、それぞれ 5月23日と11月5日の地震後1カ月間の 余震

個の M6.5 以上の地震が発生しているが, そのうち M6.9 以上の地震は7 個にものぼり, すべてで 津波が観測された.

1938年の地震に関しては、いくつか既往研究 がある. 羽鳥(1976)は津波波源域を求め、5月 23日のイベント1、11月5日のイベント2、イベ ント3の地震は津波の初動がすべて押し波、11 月6日のイベント4と11月7日のイベント5は 引き波の初動が観測されたことから、メカニズム の違いを示唆した. Abe (1977) はメカニズム解 や断層パラメータを推定し, イベント1, イベン ト2, イベント3の地震は太平洋プレートと陸の プレートの境界で発生した逆断層地震, イベント 4とイベント5の地震は正断層地震と結論付け た. 池田ほか (2008) は, 3つのプレート境界地 震について, 波形インバージョンによって得られ たすべり分布に基づいて特性化震源モデルを作成 している.

この地域ではM7クラスの地震は、2011年頃 までこれら 1938 年の一連の地震しかしられてい なかった. ところが、2011年東北地方太平洋沖 地震の震源域には、これら1938年の地震群の領 域が含まれており、また、2005年から始まった 文部科学省による「宮城県沖地震における重点的 調査観測」や多くの研究者による 2011 年東北地 方太平洋沖地震後の調査によって、宮城県~福島 県沿岸では過去2500年間に、4回の巨大地震に よる津波の痕跡があることが分かった. それらの うち869年貞観地震(M_w8.4程度もしくはそれ 以上)も福島県沖を含む領域で発生した 2011 年 東北地方太平洋沖型の地震と評価されている(地 震調査委員会,2011).福島県沖は、隣接する領 域との連動によって M8~9 クラスの巨大地震が 発生するか、M7~8クラスの群発地震として発 生するか、両方の可能性が考えられる、そのため、 メカニズムが異なる地震が群発して発生した 1938年の地震について詳細を明らかにすること は重要である.

本稿では1938年を中心に福島県沖で発生した

図 4 (a) 遠地波形記録の比較に用いた観測点分布.(b) イベント 1, 2, 3 のすべり分布から計算した 遠地地震波形と観測波形の比較.(c) イベント 2 のすべり分布から計算した津波波形と観測波形 の比較

M7 クラスの地震像について紹介するが,地震波 形や津波波形を用いた 1938 年の逆断層地震の解 析や,1938 年と 2014 年,2016 年の正断層地震の 比較を行った Murotani and Satake (2016,2017) などをまとめたものである.

3.1 1938年の逆断層地震のすべり分布の検討

室谷ほか(2004)は、仙台、新潟、前橋、水戸、 本郷(図2)の近地地震波形を用いたインバー ジョンによって逆断層地震の不均質すべり分布を 推定した(図3). これらのすべり分布を用いて Christchurch (CHR, ニュージーランド), De Bilt (DBN, オランダ), Pasadena (PAS, アメ リカ), Pulkovo (PUL, ロシア)(図4a)での地 震波形を計算し, 観測波形との比較を行うと, す べてのイベントにおいて観測波形の位相は比較的 再現できているものの, 計算波形の振幅が観測波 形の振幅よりも数倍から十数倍大きくなる結果と なった(図4b). 近地地震波形インバージョンか
ら得られたすべり量と M_w は,比較的よく近地観 測波形を再現できていたが,過大評価だったと考 えられる.また,イベント3では2つの大きなす べり領域(アスペリティ)が推定されているが, 室谷ほか(2004)は津波波源域の再検討から,近 地波形は南側のみのすべり領域だけでも説明は可 能としている.そのため,南側のすべり領域のみ から遠地地震波形を計算したところ,計算波形の 振幅は観測波形とほぼ同じとなった(図4b右 端).全体に過大評価だったか,アスペリティが 1つの地震である可能性がある.

イベント2で発生した津波について,八戸,鮎 川,宮古,尾島,小名浜(図2)での津波観測記 録と,すべり分布から計算した津波波形とを比較 した結果(図4c),遠地地震波形比較の結果と同 様,計算波形の振幅が観測波形よりもかなり大き かった.やはり,すべり量やM_wが過大であった と考えられる.さらに,いくつかの観測点では初 動の押し引きが一致しなかったため,陸域側の海 底の沈降量が大きすぎたと考えられる.イベント 3に関しては,イベント2の2時間後に発生した ために津波波形の分離が困難で,検討を行うのは 難しい.

以上のことから,不均質すべり分布は,過大評 価となっていると考えられるため,観測記録の追 加や速度構造の見直し,近地・遠地地震波形,津 波波形を同時に用いるジョイントインバージョン を行う等,再検討が必要である.

3.2 1938年と2014年,2016年の正断層型地震 の検討

2011 年東北地方太平洋沖地震の発生後には, 福島県沖で M6~7 クラスの正断層型や横ずれ型 の余震が多発したが,1938 年の一連の地震を除 いて 2011 年までは正断層型の大地震の発生は知 られておらず,1938 年に M7 クラスの正断層型 の地震がほんとうに起きたのかという議論は長く 残っていた.一方で,2014 年 7 月 12 日に,イベ ント 5 の震央付近で M_{jma} 7.0 の正断層型地震が, 2016 年 11 月 22 日には、イベント 4 の震央付近 で 1938 年と同規模の M_{jma} 7.4 の正断層型地震が 発生した(表 1,図 2).福島県沖を震源とする M7を超える地震が発生したのは、1938年以降、 これらの2014年と2016年の地震と、アウターラ イズで2013年に発生した M_{jma}7.1の正断層地震 のみである.

福島県沖で発生した正断層型地震の検討を行う ため、震央の近い 1938 年のイベント 4 と 2016 年 の遠地地震波形の比較を行った. イベント4の Christchurch, De Bilt, Pasadena, Pulkovo での 波形と、それらに近い 2016 年の South Karori (SNZO, ニュージーランド), Black Forest Observatory (BFO, ドイツ), Pasadena, Obninsk (OBN, ロシア) での波形を比較すると、振幅は イベント4のほうが大きいが.波形の位相や立ち 上がりは非常によく似ていることから(図5). 1938年の地震は正断層であると考えてよさそう である.しかしながら,2016年の地震の気象庁(走 向 65°, 傾斜 55°; 走向 212°, 傾斜 40°) や USGS (走向 42°, 傾斜 49°; 走向 238°, 傾斜 42°) によ るメカニズム解と、イベント4のAbe (1977) によるメカニズム解(走向10°,傾斜10°;走向 190°. 傾斜 80°) は走向. 傾斜が異なっている. 一方で、2014年の地震は1938年のイベント5の 震央と非常に近いが、観測波形はどちらかという とイベント5よりはイベント4や2016年の波形 に近い (図5). Abe (1977) はイベント4とイ ベント5を同じメカニズムと仮定していたが、遠 地地震波形を比較するといくつかの観測点で初動 が異なるため(図6). イベント5のメカニズム はイベント4や2016年,2014年の地震とは異な ると考えられるが、今後の検討課題である.

次に、1938年と2016年の津波波形に関して、 両者を比較できる観測点は宮古、鮎川、小名浜の 3点であり、2014年は津波が小さく、1938年と 比較できる観測点は鮎川1点のみであった。宮古 ではイベント4は約10cm、2016年は約30cmの 津波が観測されたのに対し、鮎川ではイベント4 では約60cm、2016年では約30cmと、観測点に よって波形の振幅比の大小が異なるうえに波形の 位相の相関もよいとは言えず、津波波形の比較か らこれらの地震の比較は難しい(図7b).また、 各検潮所での津波到達時刻による逆伝播図から推

図 5 1938 年のイベント 4,5 と 2014 年,2016 年の遠地地震波形記録の比較、Zp は P 波上下動,Es と Ns はそれぞれ EW,NS 成分の S 波を示す

図 6 1938 年の地震の CHR, DBN, PAS, PUL の地震波形の比較. Zp は P 波上下動, Ns, Es はそれ ぞれ S 波の NS 成分, EW 成分を示す

定される津波波源域は、1938年のイベント4に 比べて2016年の波源域はかなり小さい(図7a). イベント4と2016年の地震は、 M_{jma} はともに7.4 と同じであるが、 M_w (USGS)がそれぞれ7.7,6.9 と異なる、この M_w の差や波源域の大きさ、すべ り分布の違い,地形の影響など,さまざまな要因 が重なって津波波形の比較が困難になっている.

2016年の地震について,震央距離30°~100°の IRIS-DMCの広帯域地震計記録のP波上下動77 点を用いて遠地実体波インバージョン解析を行う

図7 (a) 1938年のイベント4,5と2014年,2016年の震央、メカニズム解と、イベント4,2016年の津波波源域、津波波源域は、各観測点での津波到達時刻による逆伝播図から推定したもの、実線はイベント4,破線は2016年を表す。(b) 1938年,2014年,2016年の津波波形の比較、矢印は初動を示す

と、断層長さ70km、断層幅40km、(走向、傾斜、 すべり角)=(50°,35°,-89°)、 M_0 =3.1×10¹⁹Nm、 M_w =6.9、最大すべり量=1.4m、平均すべり量= 0.4m(剛性率は μ =30 GPaを仮定)、震源の深さ 10.5kmとなった、気象庁カタログの震源の深さ は24.5kmであるが、気象庁 CMT 解の深さや、 防災科学技術研究所の広帯域地震観測網(F-net) や高感度地震観測網(Hi-net)の震源の深さも10 km 前後に推定されていることから、2016 年の地 震やその余震群は、太平洋プレート上盤側のプ レート内の浅い場所で発生した正断層地震と思わ れる(図8). それに対し,2004年,1938年のイベント4やイベント5が,どのプレート内で起きた地震なのかを明らかにすることが課題である.

4. まとめと課題

1938年福島県東方沖地震の一連の地震につい て、2014年、2016年に福島県沖で発生した M7 クラスの地震との比較をしながら検討を行ってい る.

1938年5月23日,11月5日17時43分 と19時50分に発生した地震(イベント1,2,3)について,近地地震波形記録を用いて得られたすべり量分布から遠地地震波形や津波波形を計算すると,かなりの過大評価となった.これらの地震は,太平洋プレートが沈み込む境界で発生した逆断層と考えられており,このプレートの沈み込みを考慮した断層面や観測データの追加,三次元速度構造を用いるなど,断層パラメータやすべり量の再検討が必要である.

11月6日と11月7日に発生した地震(イベン ト4,5)の震央近くでは、それぞれ2016年11 月22日,2014年7月12日に正断層地震が発生 しており、遠地波形の比較からイベント4は正断 層と考えられる、イベント5は、おそらく他の正 断層と異なるメカニズムと思われるが、まだ検討 が必要である、2016年は太平洋プレート上盤側 の陸のプレート内で発生した地震であるが、イベ ント4やイベント5の地震がどのプレート内で発 生したのかが気になるところであり、引き続き検 討していく必要がある.

2014年や2016年の地震は2011年東北地方太 平洋沖地震から数年が経過して発生しているが, 福島県沖のプレート境界においてM7~9クラス の逆断層地震が発生した後には,正断層型の地震 が起こるものと思われる.

長く一連の1938年福島県東方沖地震に取り組 んでいるが、なかなか成果をだせていないことを 申し訳なく思っている.2011年東北地方太平洋 沖地震や869年貞観地震の震源域になっているだ ろう1938年の地震の地震像を明らかにすること

図8 気象庁カタログによる2016年11月22日の本震とM_{ima}4以上の余震分布.コンターは遠地実体 波インバージョン解析から得られたすべり分布を表す.コンター間隔は20 cm

は,福島県沖でのM7~M9クラスの地震の発生 メカニズムや防災を考えるうえで重要であり,引 き続き検討を行いたい.

謝辞

以上の解析には、気象庁の地震・津波波形記録 と震源カタログ、国土地理院・港湾局の津波波形 記録、世界各地の地震波形記録を使わせていただ きました.ここに記して感謝申し上げます.

参考文献

Abe, K. 1977. Tectonic implications of the large Shioyaoki earthquakes of 1938. *Tectonophysics*, **41**, 269–289. 中央防災会議 災害教訓の継承に関する専門調査会.

2005. 1888 磐梯山噴火報告書,平成 17 年 3 月公表. http://www.bousai.go.jp/kyoiku/kyokun/kyoukun nokeishou/index.html

中央気象台地震掛. 1940. 昭和13年11月5日福島県 東方沖地震及び同余震調査報告. 験震時報, 10, 528-545.

- 羽鳥徳太郎. 1976. 1938 年福島沖群発地震による津波 の発生機構. 地震, **29**, 179-190.
- Iida, K. 1956. Earthquakes accompanied by tsunamis occurring under the sea off the Islands of Japan. J. Earth Sci., Nagoya Univ., 4, 1-43.
- 池田 孝・加藤研一・植竹富一・敦賀隆史. 2008. 1938 年塩屋崎沖地震群の震源モデルの特性化と地震動評 価. 日本建築学会構造系論文集, 73, 1951-1958.
- 地震調査委員会. 2011. 三陸沖から房総沖にかけての 地震活動の長期評価(第二版). 平成 23 年 11 月 25 日. https://www.jishin.go.jp/main/chousa/kaikou_ pdf/sanriku_boso_4.pdf
- Murotani, S. and Satake, K. 2016. Seismic waveform analyses for the 1938 Off Fukushima earthquake sequence. AGU Fall Meeting, S21B-2721.
- Murotani, S. and Satake, K. 2017. Normal fault type earthquakes Off Fukushima region—comparison of the 1938 events and recent earthquakes—. AGU Fall Meeting, S31C-0832.

室谷智子・菊地正幸・山中佳子・島崎邦彦. 2004. 1938

年に起きた複数の福島県東方沖地震の震源過程(2). 日本地震学会 2004 年秋季大会, P029.

- 大迫正弘・佐藤 公・細馬宏通, 2003, 磐梯山噴火の 幻灯写真, 国立科学博物館研究報告 E 類, 26, 1-9,
- 関谷清景. 1888. 磐梯山破裂ノ話. 東洋学芸雑誌, 5, 493-499. 529-537.
- Sekiya S. and Kikuchi, Y. 1889. The eruption of Bandaisan. J. Coll. Sci. Imp. Univ. Jpn., 3, 91-172.
- 竹花峰夫·副田勝利. 1938. 昭和13年5月23日福島 県塩屋崎沖地震踏査報告. 験震時報, 10, 303-309.

室谷智子

[むろたに さとこ]

現職 国立科学博物館理工学研究部理化 学グループ研究主幹

略歷 東京大学大学院理学系研究科地球 惑星科学専攻博士課程修了. 文部科学省 研究開発局地震·防災研究課非常勤職員,東京大学地

震研究所特任研究員,国立科学博物館理工学研究部理 化学グループ研究員を経て現職

研究分野 地震学

2015 年 5 月 30 日小笠原諸島西方沖深発地震と 異常震域の謎

古村孝志

1. はじめに

2015年5月30日に小笠原諸島西方沖の深さ 682kmで発生したM8.1の深発地震は、規模も深 さも観測史上最大級のものであった.この地震に より東京都小笠原村と神奈川県二宮町で最大震度 5強を観測.強い揺れは関東から東北の太平洋岸 を中心に広がり、全国47都道府県すべてが有感 となった.首都圏では怪我人が発生し、停電やエ レベータ閉じ込めなどの被害が起きた.

この深発地震には謎が多い. なぜ, M8 規模の 深発地震が沈み込むプレート最深部の, 上部マン トル/下部マントル境界を越えて起きたのだろう か. そして, 日本全域を揺らした強い揺れはどの ようなものだったのか. 強震波形記録を調べる と, この謎の地震特有の揺れの特徴が見えてきた.

2. 2015年小笠原諸島深発地震

2015年5月30日(土)の20時23分,小笠原 諸島西方沖を震源とする,M8.1(気象庁マグニ チュードによる.モーメントマグニチュードは Mw7.9)の地震が発生した.震源の深さは682 km.この地震により,東京都小笠原村母島と神 奈川県二宮町で最大震度5強を観測,震度1以上 の揺れが47都道府県全域に広がった(図1).全 国が有感となったのは,震度観測が始まって以来 初めてのことだという.

この地震により、東京では火災が1件発生、東 京、神奈川、埼玉では13人のけが人が発生、そ して600世帯が停電した、首都圏の1万9千台の エレベータは緊急停止し高層ビルに人が取り残さ れる事態となり、14台では人の閉じ込めが発生 した.

近年,世界で起きた M8 級の深発地震には, 1870年コロンビアの地震(M8.0;645 km),1994 年ボリビアの地震(M8.3;647 km),2013年オ ホーツク海の地震(Mw8.3;596 km)があげられ る.小笠原諸島西方沖地震は、これらの地震と比 べても規模も深さも世界最大級のものであった.

小笠原諸島西方沖地震の震源域周辺には、大き な地震の記録はないが、少し離れた場所では M7 クラスの深発地震が多発しており、近年には 2010年(M7.1),2000年(M7.2),1998年(M7.1), 1984年(M7.6),1970年(M7.1),1968年(M7.3), 1951年(M7.2)に地震があった。これらの地震 は、450~490kmの深さで起きており、発震機構 はおおむね太平洋プレートが沈み込む方向に圧力 軸を持つ型(down-dip compression)であった。

深発地震は、上部マントルを構成するかんらん の岩の結晶構造がスピネル型構造に相転移して密 度が増大し、その上部の沈み込んだプレート(ス ラブ)に浮力が働くことで発生すると考えられて いる.そして、660km付近でもスピネル構造か らペロブスカイト構造へと相転移することで同様 のメカニズムの地震が起きると考えられている.

しかしながら,2015年の小笠原諸島西方沖地 震は,通常の地震活動より100~200kmも深く (図1),沈み込んだプレート(スラブ)の内部で はなく下面付近で起きたことになる.しかも,発 震機構は通常の深発地震とは異なる東西方向に張 力軸を持つ型であり,沈み込んだスラブの最深部 を引きちぎるような力が働いたことが考えられる.

伊豆・小笠原海溝から約 50 度の急角度で沈み 込む太平洋スラブは,深さ 660 km 付近の上部マ

 図1 2015年5月30日小笠原諸島西方沖地震(M8.1;深さ682km)による震度分布(気象庁震度デー タベースによる作図に加筆)と、震源域周辺(点線の範囲)での地震活動と震源の位置関係(気 象庁、2015に加筆)

ントル/下部マントル境界付近に到達すると,高 密度のマントルに沈み込めなくなる.結果,スラ ブは 660 km 境界面に横たわった状態(スタグナ ントスラブ)になっていることが,地震波トモグ ラフィの研究から示されている(たとえば, Obayashi et al., 2017; Zhao et al., 2017).スラブ の先端が折れ重なるように積み重なり 660 km 境 界の下に沈み込んでいるという説明(Porritt and Yoshioka, 2016; 図 2a)や,スラブの先端が南北 で逆方向に折れ曲がり裂けているという解釈 (Zhao et al., 2017; 図 2b)もある.

スタグナントスラブは,後から沈み込んでくる スラブに押されて密度を増し,やがて 660 km 境 界を突き抜けて下部マントルへと落ちる.今回の 地震は,その前兆現象であるとの解釈もある (Obayashi *et al.*, 2017).

小笠原諸島西方沖地震の発生には、こうした太 平洋スラブ深部と 660 km 境界の力学的な作用が 関係していると考えられる。

3. 深発地震と異常震域

3.1 異常震域の生成

太平洋プレートで深発地震が起きると,震源か ら遠く離れた北海道~東北~関東周辺の太平洋岸 で震度が大きくなる「異常震域」が現れる. 広域 に広がる異常震域は,軟弱な表層地盤により局地 的に震度が大きくなるサイト増幅とは別の,マン トル構造の不均質性がもたらす影響である.

異常震域は、日本海溝から斜めに沈み込む太平 洋プレートが、太平洋側(東北日本弧の前弧側) に揺れを良く伝えるのに対し、減衰の大きなマン トルを通った地震波が日本海側(背弧側)へと伝 わることで、火山フロントを境に震度に大きな違 いが生まれることが原因である.

日本海の深さ300~400 kmの深発地震や,中 国北東部~ウラジオストックの深さ500~600 km の深発地震が示す異常震域は強烈であり,震源直 上では無感であっても,1,000 km 以上遠く離れた

図 2 小笠原海溝下の深部に沈み込んだ太平洋プレート(スラブ)の深部での状態と2015年小笠原諸 島西方沖地震の位置関係.(a)上部マントル/下部マントル境界付近で積み重なったモデル,(b) スラブが南北方向で逆方向に折れ曲がり裂けたモデル.Ye *et al.*(2016)をもとに作成

 図3 太平洋プレートの深発地震による異常震域の例.(a) 2007 年京都府沖の地震(M6.7, 374 km).
(b) 2002 年ウラジオストックの地震(M7.2, 589 km).(c) フィリピン海プレートのやや深発地 震の例;2006 年大分県西部の地震(M6.2, 145 km).気象庁震度データベースによる作図に加筆

場所で大きな震度を記録する(図3).2007年7 月16日の京都府沖(若狭湾)の深発地震(M6.7; 374km)では、北海道浦幌町で最大震度4を観 測した(図3a).深発地震ほど顕著ではないが、 プレート境界の地震でも異常震域が起きる. 異常震域は,世界中の沈み込み帯で見られるは ずだが,台湾,イタリア,ニュージーランドを除 き明瞭な観測報告はない.おそらく,島弧と火山 フロントの位置関係や震度・強震観測網の配置条 件によるのだろう.フィリピン海プレートのやや 深発地震でも九州や中国地方に異常震域が見られ るが、太平洋プレートの地震ほど明瞭ではない (図 3c).フィリピン海プレートの厚さ(30~40 km 程度)は太平洋プレート(100~120 km 程度) より薄く、地震波を伝える効果が弱いためだろう.

3.2 異常震域の発見

日本で異常震域の存在が認知されたのは,震度 観測が開始された1900年代初頭のことである. 大日本気象学会の学術誌『気象集誌』に掲載され た大正7年の論文(長谷川,1918)には,震源は 三陸はるか沖と発表した地震が,後の精査により 日本海の地震と判明したことが記されている.そ の後,気象集誌と中央気象台の学術誌『験震時報』 に発表された昭和元年の2編の論文(石川,

1926a, b)には異常震域の用語が使われ,特異な震度分布を示す観測例とともに異常震域の成因 が議論されている.論文中には,揺れやすい地質 構造の影響や,双子地震の可能性とともに,寺田 寅彦博士の仮説として,揺れが日本海から太平洋 側の地殻ブロックにドミノ倒しのように増幅され るモデルも紹介されている.だが,著者の釈然と しない思いが論文の結言「…自分も尚研究する考 えなれども又何かに気の付いた事あらば教えを垂 れん事を希ふ.」から覗える.まだ深発地震の存 在が知られておらず,プレートテクトニクス論も 生まれていない時代のことである.

それから数十年を経て、和達(1927)が深発地 震面を発見、そしてUtsu(1966)により日本海 溝から日本海下に傾斜した地震帯の存在と、その 周囲の高減衰(Low-Q)マントルの存在が示され た.そして、地震波の走時解析(Utsu, 1967)と スペクトル解析(Utsu and Okada, 1968)から地 震帯は地震波の伝わる速度が速く(High-V)減 衰が小さい(High-Q)「宇津モデル」が完成、異 常震域の原因が明らかになった。Dietzの海洋底 拡大説を経て、Wilsonによるプレートテクトニ クス論がまもなく完成しようとする時期のことで ある.

3.3 異常震域を作るもう1つのメカニズム

だが, High-V, High-Q のプレートだけでは異 常震域の成因を十分に説明することはできない. 減衰が小さいプレートは地震波を遠くまで伝える のに有効だが、高速度のプレートは地震波を低速 度のマントルに向けて逃がしてしまうためだ(図 4).そして折れ曲がったプレートに地震波を閉じ 込め、遠くまで導波(ガイド)するためには、 High-V, High-Q 以外に何か別のメカニズムが必 要である.

異常震域で記録される地震波には、高周波数 (>1~2Hz)の成分が強く含まれ、そして揺れの 継続時間が長い紡錘形の波形を示す特徴がある (図4b;KMUF観測点).そしてガタガタとした 小刻みな揺れが長く続くことで、建物の天井や壁 などの施設被害が発生したり、エレベータを緊急 停止させる加速度センサーが過敏に反応したりす る.その一方で、木造家屋の被害に影響する、周 波数0.5~1Hz程度のやや低周波数の成分は弱 い、大きな震度のわりには、家屋の全半壊の報告 がほとんどないのはこうした地震動特性によるも のだろう.

プレートガイド波における強い周波数依存性 は、プレートを伝わった前弧側観測点(図4; KMUF)の加速度波形と、プレートを伝わらな い背弧側観測点(HSSF)の波形のスペクトル比 をとることで確認できる(図4c).ウラジオス トックの深発地震(図3b)の際に、異常震域の 中のKMUF 観測点で記録されたプレートガイド 波には、異常震域の外のHSSF 観測点と比較し て1Hzで2倍、5Hzで40倍の強さを持つ高周 波数地震動が含まれていた.逆に、0.5Hz前後の 地震動成分は1/5程度の強さだった.すなわち、 太平洋スラブは、高周波数地震動を導波(waveguide)し、そして0.5~1Hz程度のやや低周波数 地震動を反導波(anti-waveguide)する働きを持 つ.

3.4 高周波数地震動のみを伝えるプレート内部 ラミナ構造

近年,不均質媒質中での地震波散乱現象の理解 が大きく進んだことで(Sato *et al.*, 2012),高周 波数で長時間続く揺れとプレート内部の不均質構 造による散乱現象とが結びつけられた(Furumura and Kennett, 2005).

図 4 沈み込む太平洋プレートによる地震波の導波・反導波特性の模式図.(a)スラブ内部不均質構造 (ラミナ)による高周波数地震動の強い前方散乱・導波と、高速度スラブから低速度マントルへ の低周波数地震動の抜け出し・減衰の様子.(b)2002年ウラジオストックの地震における、背 弧側観測点(HSSF)と前弧側観測点(KMUF)での加速度波形記録の比較.(c)スペクトル比 (KMUF/HSSF)から見た太平洋スラブの導波・反導波特性

東太平洋海嶺で上昇したマグマから生まれた若 い太平洋プレートの薄い地殻は、冷やされる過程 で下部にマントルが付着してしだいに厚さを増 す.長い時間をかけて北太平洋上を移動する間に はアセノスフェアの付着も起きる.こうして厚み を増した太平洋プレートの内部は、堅い/柔らか い地層が積み重なった互層(ラミナ)構造になっ ていることが考えられる(図4a).プレート内部 の部分溶融層や亀裂に閉じ込められた流体の存在 もまた、ラミナ構造の生成に寄与する.

そして、プレート内部のラミナ構造において、 波長の短い高周波数地震波が強い散乱を起こし、 広角反射を繰り返しながら前方に進む(前方散 乱)ことで、高周波数地震動を内部に閉じ込め遠 くまで伝えることが可能となる.

観測された地震波の周波数特性から, ラミナ構 造のスケール(地震波速度の空間変動を表す相関 距離)はプレートの厚み方向に0.5km 程度, そ してプレートの走行方向に 10km 程度の大きさ を持つと推定されている.このスケールより波長 が長い低周波数地震動は散乱せずに,高速度のプ レートからマントルに抜け出し減衰する.なお, 紡錘形の地震波形の特徴から,不均質性の強度 (物性値の平均からの揺らぎ)の標準偏差は 2~4% 程度と見積もられている (Furumura and Kennett, 2008).

小笠原諸島西方沖地震の異常震域と 強震動の謎

話を2015年小笠原諸島西方沖地震に戻し、この地震で見られた異常震域は地震の規模(M8.1) から考えて弱かったことを説明しよう.

4.1 弱かった、小笠原諸島西方沖地震の異常 震域

最大加速度分布と強震波形(図5)を,2010年 11月30日の小笠原諸島西方沖の深発地震(図6; M7.1;460km)と比較する.最大加速度分布は, 防災科学技術研究所のK-NET,KiK-net強震記 録の水平最大値を,強震波形はF-net強震計記録 のRadial成分を示している.なお,2地震の規模 が大きく異なることから,最大加速度のカラース ケールは変えてある.

最大加速度分布を比べると,2010年の深発地 震の加速度コンターが2015年の地震より北まで 延びていることがわかる.2010年の地震の加速 度波形は、2015年のものより、高周波数成分に 富む揺れが長く続いている様子もわかる.Furumura and Kennett (2017)では、各地の最大加 速度値を地震動予測式(距離減衰式)と比較し、

また地震波のスペクトル解析から,2015年の地 震ではスラブガイド波が通常の深発地震より弱 く,異常震域の形成が弱かったことを述べてい る. Takemura *et al.* (2016) はスラブガイド波の 特徴である紡錘形の波形を示していないことを指 摘し,その原因として地震がプレート下面付近で 起きたことを地震波伝播シミュレーションに基づ き説明している.

4.2 深発地震による SP 変換波, SPmP 波, S-PL 波

では、2015年小笠原諸島東方沖地震で日本列 島全域を有感にした揺れは、どのようなものだっ たのか.

図5に示した加速度波形のレコードセクション を見ると、震央距離1,000km以遠(東北地方以 北)の地点では、高周波数(>1~2Hz)のプレー トガイド波よりずっと先に到着した、やや低周波 数(0.5~1Hz)の波群が最大加速度を作ってい たことがわかる、その波は大振幅のパルスからな り、低周波数(<0.1Hz)の相が後続している。

これらの波群の見かけ速度は約6.5 km/s であ り,地殻を伝わる P 波に関係した波と考えられ る.深さ682 km の深発地震から放射された S 波 は,震央距離1,000 km 付近において臨界角に近 い角度で地表へと入射し,入射 S 波の4倍近い 振幅の SP 変換波を生み出す(たとえば,Aki and Richards,2002,第5.3章).こうした現象は 1,500 km 以遠まで続き,大振幅の SP 変換波は地 殻内を広角反射を繰り返しながらさらに遠地まで 伝わる(SPmP 波;図7).こうして,やや低周波 数の SP 変換波と SPmP 反射波が有感の範囲を拡 大したものと考えられる.

後続するやや長周期(4~8s)の地震波形を調 べると,弱い正分散性を示すとともに,震動軌跡 はRadial-Vertical面内で時計回りに回転(Prograde;すなわちレイリー波の基本モードのRetrograde回転と反対)していた.これは,地殻内 を伝わる SPmP 波と入射 S 波が干渉(カップリン グ)を起こして生まれた S-PL 波(Shear-coupled PL wave)と解釈された.

深発地震では表面波の励起が弱く,一般に長周 期地震動は発生しにくいが,小笠原諸島西方沖地 震では関東と長野県で長周期地震動震度階級2 を,そし東北,北陸,大阪,九州の広い範囲で階 級1を観測した.地震の規模が大きかったことが 最大の理由だが,SPmP 波や S-PL 波の伝播が関 係している可能性もある.

なお、2010年の深発地震(460 km)のレコー ドセクション(図 6)には、SP 変換波や S-PL は

図 5 2015年小笠原諸島西方沖の地震(M8.1, 682 km)における,日本列島の最大加速度分布と,伊豆 諸島〜関東〜東北〜北海道にかけての前弧側観測点での加速度波形記録(Radial 成分)

図 6 2010 年の小笠原諸島西方沖の地震(Mw7.1,460 km)における,日本列島の最大加速度分布と, 伊豆諸島~関東~東北~北海道にかけての前弧側観測点での加速度波形記録(Radial 成分)

みられない.スラブ内で起きた地震のために、マ ントルに放射されるS波が弱かったことや、大 振幅のスラブガイド波に覆い隠され見えづらく なっていることも原因であろう.

4.3 太平洋プレート内部で M8 級の深発地震が 起きたら?

では、2015年小笠原諸島西方沖地震が通常の 深発地震のように、太平洋スラブ内部で起きてい

図7 深さ680kmの深発地震からのS波入射と地 表での強いSP変換波の生成,地殻内の広角 P反射(SPmP)の伝播,および入射S波との カップリングによるS-PL波の生成の模式図

たとしたら,日本列島の揺れはどうなっていただろうか.

スラブ内の仮想 M8 地震による強震動を評価す るために、3次元差分法による強震動シミュレー ションを行った.計算範囲は、水平2,000 km× 1,500 km,鉛直1,000 kmとし、250 mの格子間隔 で離散化して、Crust 1.0 モデル(Laske *et al.*, 2013)より地殻構造を、全国一次地下構造モデル (JIVSM, Koketsu *et al.*, 2012)より太平洋プレー ト・フィリピン海プレート構造を設定した.

スラブ内部の不均質構造(ラミナ構造)は, Furumura and Kennett (2005)に基づき,スラ ブの地震波速度に揺らぎを与える形でモデル化し た. 揺らぎの分布は Von Karman 型に従い,プ レートの走行方向の相関距離を 10 km,厚み方向 を 0.5 km,ゆらぎの標準偏差を 4% とした.

本計算モデルでは地殻の最小S波速度を3.4 km/s(異常震域に直接結びつかない表層地盤は 考慮しない)とし,最大周波数3Hzまでの高周 波数地震動を評価した.

地震波伝播計算は,海洋研究開発機構のスパコン(地球シミュレータ)で行った.1,564 CPU を 用いた並列計算において 750 秒間の地震波伝播計 算に要した時間は 4 時間であった.

計算結果を図 8a に示す.2015 年小笠原諸島西 方沖地震の発生から 147 秒,258 秒,330 秒後の 揺れの広がりを P 波を赤色で,S 波を緑色で可視 化している.図の下には,震央〜北海道を横切る 断面(A-A')の波動場を示している.太平洋ス ラブの下面付近の震源(☆印)から放射されたS 波がマントルを通って地殻に入射し(147秒), 地表面で強いSP変換波を生成するとともに(258 秒),地殻内で広角反射(SPmP)を繰り返しな がら伝わる過程で,入射S波とカップリングを 起こしてS-PL波が生成されるまでの過程が確認 できる(330秒).

地震波伝播シミュレーションにより再現された 小笠原諸島西方沖地震の最大加速度分布と加速度 波形を図 9a に示す.シミュレーションの制約に より,周波数 3Hz 以上の高周波数地震動は評価 できていないが,観測記録(図5)と比較して, 最大加速度分布の形状と,大振幅の SP 変換波と SPmP 波,そして後続する S-PL 波,さらに遅れ て到達する弱いプレートガイド波の特徴をよく再 現できていることがわかる.

次に、2015年小笠原諸島沖地震の震源を西に 100km 動かし、ちょうど太平洋スラブ内部を震 源とする仮想スラブ内地震の地震波伝播シミュ レーションを行った(図8b.9b). 求められた最 大加速度分布と加速度波形を比べると、強いスラ ブガイド波により関東~東北での最大加速度が 2~4倍程度大きくなるほか、強い揺れが日本全 域に拡大することが確認できた.地下断面の地震 波動場のスナップショットを見ると、スラブ内部 に放射されたS波が強い散乱を起こして大きく 長時間続く波群を作り、これがスラブ内部を伝 わって地表に強い揺れを起こす様子がわかる. 一 方、マントルに向けて放射されるS波は弱く、 これが作り出す SP 変換波と SPmP. そして S-PL 波は弱まり、そして大振幅のスラブガイド波に覆 い隠され見えづらくなっている.

5. おわりに

2015年小笠原諸島西方沖地震は,規模(M8.1) も深さ(680km)も観測史上最大級のものであっ た.しかしながら,この地震が沈み込む太平洋ス ラブの下面付近で起きたものであるために,通常 のスラブ内部で起きる深発地震に比べて,スラブ

 図8(a) 2015年小笠原諸島西方沖地震の地震波伝播シミュレーション. 地震発生から147秒,258秒, 330秒後の3次元波動場と鉛直2次元断面(A-A')での地震波伝播の様子. P 波を赤,S 波を緑 で表示,(b)震源の位置を100km 西にずらし、スラブ内に置いた仮想深発地震でのシミュレー ション結果

ガイド波の生成は弱く、観測された高周波数 (>1~2Hz) 地震動のレベルは地震の規模から考 えて相対的に弱かった.逆に、通常の深発地震で は見られない、やや長周期(1~2Hz)のSP変換 波と SPmP 反射波,そして長周期(4~8秒)の
S-PL 波が明瞭に観測され,これが遠地(>1,000 km)での最大加速度と震度を作り出した.

かりに、同規模の深発地震がプレート内部で起

図 9 地震波伝播シミュレーションから求められた,(a) 2015年小笠原諸島西方沖地震の最大加速度 分布と加速度波形 (Radial 成分の再現結果).(b) 太平洋スラブ内部の仮想地震のシミュレーショ ン結果

きた場合には、小笠原諸島西方沖地震の2~4倍 程度の加速度と長い継続時間を持つ強震動が発 生、関東~東北~北海道の太平洋沿岸には強い異 常震域が形成される可能性があった。

謝辞

図面の作画には、気象庁震度データベース

 (http://www.data.jma.go.jp/svd/eqdb/data/ shindo/index.php)を使用しました.防災科学技 術研究所のK-NET, KiK-net, F-net 強震波形記録 を使用しました.地震波伝播計算には、海洋研究 開発機構の地球シミュレータを使用しました.記 して感謝申し上げます.

参 考 文 献

- Aki, K. and Richards, P.G. 2002. *Quantitative Seismology*. 2nd ed., University Science Books, Sausalito, California.
- Furumura, T. and Kennett, B.L.N. 2005. Subduction zone guided waves and the heterogeneity structure of the subducted plate : Intensity anomalies in northern Japan. J. Geophys. Res., 110, B10302.
- Furumura, T. and Kennett, B.L.N. 2008. A scattering waveguide in the heterogeneous subducting plate, in *Earth Heterogeneity and Scattering Effects on Seismic Waves, Adv. Geophys.*, ed. by Dmowska, R., Vol. 50, 195–217, Elsevier, Amsterdam.
- Furumura, T. and Kennett, B.L.N. 2017. Unusual strong ground motion across Japan from the 680 km deep 30 May 2015 Ogasawara Islands earthquake. J. Geophys. Res., 122, 8143-8162.
- 長谷川謙. 1918. 日本海の地震. 気象集誌, **37**, 203-207.
- 石川高見. 1926a. 異常震域に就いて. 気象集誌 2, 4, 137-146.
- 石川高見. 1926b. 異常震域を表せる地震記象に就いて. 験震時報, 2, 7-15.
- 気象庁. 2015. 5月30日 小笠原諸島西方沖の地震. 平 成27年5月地震・火山月報(防災編), 24-25.
- Koketsu, K., Miyake, H. and Suzuki, H. 2012. Japan integrated velocity structure model version 1, in Proceedings of the 15th World Conference on Earthquake Engineering, Paper no. 1773.
- Laske G., Masters, G., Ma, Z. and Pasyanos, M. 2013. Update on CRUST1.0—A 1-degree Global Model of Earth's Crust. *Geophys. Res.*, Abstracts, 15, Abstract EGU2013-2658.
- Obayashi, M., Fukao, Y. and Yoshimoto, J. 2017. Unusually deep Bonin earthquake of 30 May 2015 : A precursory signal to slab penetration. *Earth Planet Sci. Lett.*, **459**, 221–226.
- Porritt, R.W. and Yoshioka, S. 2016. Slab pileup in the mantle transition zone and the 30 May 2015 Chichijima earthquake. *Geophys. Res. Lett.*, **43**, 4905–4912. doi:10.1002/2016GL068168

Sato, H., Fehler, M.C. and Maeda, T. 2012. Seismic Wave

Propagation and Scattering in the Heterogeneous Earth. 2nd ed., Springer, Hidelberg.

- Takemura, S., Maeda, T., Furumura, T. and Obara, K. 2016. Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms : Occurrence of deep-focus earthquake at the bottom of a subducting slab. *Geophys. Res. Lett.*, 43, 4297–4302.
- Utsu, T. 1966. Regional difference in absorption of seismic waves in the upper mantle as inferred from abnormal distribution of seismic intensities. J. Fac. Sci. Hokkaido Univ., Ser. VII, 2, 359–374.
- Utsu, T. 1967. Anomalies in seismic wave velocity and attenuation associated with a deep earthquake zone (I). J. Fac. Sci. Hokkaido Univ., Ser. VII, 3, 1–25.
- Utsu, T. and Okada, H. 1968. Anomalies in seismic wave velocity and attenuation associated with a deep earthquake zone (II). J. Fac. Sci. Hokkaido Univ., Ser. VII, 3, 65–84.
- 和達清夫. 1927. 深層地震の存在と其の研究. 気象集 誌 2, 5, 119-145.
- Ye, L.L., Lay, T., Zhan, Z.W., Kanamori, H. and Hao, J.L. 2016. The isolated similar to 680 km deep 30 May 2015 Mw 7.9 Ogasawara (Bonin) Islands earthquake. *Earth Planet. Sci. Lett.*, **433**, 169–179.
- Zhao, D., Fujisawa, M. and Toyokuni, G. 2017. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw7.9). Sci. Rep., 7, 44487.

古村孝志

[ふるむら たかし]

現職 東京大学地震研究所教授. 博士 (理学)

略歷 1992年北海道大学理学研究科地 球物理学専攻博士課程修了.北海道教育

大学講師・助教授,東京大学地震研究所助教授・教授, 東京大学大学院情報学環総合防災情報研究センター教 授を経て,2015年より現職

研究分野 地震波・強震動解析, 地震波伝播シミュレー ション

韓国初の液状化被害

韓国浦項(ポハン)市で2017年11月15日 に地震規模 M=5.4,震源深さ3~4kmの地震 が発生した(図1参照).1905年から韓国の気 象庁が地震観測を開始して2番目に大きく,浦 項観測所で最大加速度0.282G,MMI震度階で 震度 V,韓国で初めて液状化被害が発生した. さらに大学修学能力試験を1週間遅らせたこと で知られている.

韓国行政府は、被害を受けた住民の不安を解 消するために「液状化被害の原因」、「応急措置」 および「液状化危険度評価」を地震発生後から 2017 年 12 月末までに実施した¹⁾.

この評価に関する諮問委員会が開催され,早 稲田大学濱田政則名誉教授に同行し出席,さら に濱田教授が「日本における液状化被害の現状 と住宅での液状化対策について」の特別講演を 行った一般市民向けの説明会に参加した.

浦項市訪問中に浦項地震で発生した液状化発 生地点2カ所,建物被害1カ所ならびに韓国気 象庁の地震観測点を訪問した.

諮問委員会では,液状化発生原因を調べるた めボーリング調査を実施し,日本で液状化指標 として用いられているFL,PL値とほぼ同じ 指標を使って液状化発生を評価した結果,さら に,被害が発生した地域でGPR 探査(空洞調 査)を行い,空洞が確認された場所は埋めるな どの措置を実施したことが説明された.

この地震では浦項市内の22カ所で液状化が 発生した.液状化は,1960年代末に兄山江の 下流を埋め立てた地域の 沖積地盤に集中した.

図2は, 噴砂が発生し たマンチョリン田の地震 発生2カ月後の状況を示 す. その周辺での建物の 被害はなかった¹⁾.

図3は、地震時に約 1.2mの噴砂が発生した ソンド洞のマンションが

図1 震源位置

沈下した建屋基礎周辺の状況を示す.この一帯 で発生した液状化地点で空洞が確認された場所 は、空洞を埋める措置がとられた.

図4は、周辺には液状化の痕跡は確認できな かったが、建物に発生したせん断クラック被害 状況を示す.なお、この左の建物は無被害で あった.

初めて液状化被害を経験した韓国行政府は, 液状化対策法を策定し,今後の対策として液状 化に関する研究開発の推進,液状化ハザード マップの作成,設計基準の改善,既存建物の補 修・補強方法の優先順位フローの作成が計画さ れている.

参考文献

https://search.yahoo.co.jp/image/search?rkf=
2&ei=UTF-8&gdr=1&p=%E6%B5%A6%E9%A0
%85%E5%9C%B0%E9%9C%87+%

(大保直人:公益財団法人地震予知総合研究振興会)

図 2 農地で発生した液状化の痕跡 図 3 約 1.2m 噴砂が発生した建物 図 4 建屋に発生したせん断クラック 基礎

フィリピン地震火山監視強化と防災情報の利活用推進 <平成 22~26 年度 SATREPS 課題の概要>

井上 公

1. はじめに

JST と JICA による国際共同研究支援制度であ る「SATREPS」(Science And Technology REsearch Partnership for Sustainable development)に関しては、発足時の防災分野担当研究 主幹で現在国際事業総括担当の本蔵義守先生が地 震ジャーナル 65 号に紹介されている.われわれ 防災科学技術研究所は、名古屋大学、京都大学、 東海大学をはじめ、気象庁、高知大学、国土地理 院、富山大学、北海道大学、建築研究所、他の研 究者の協力を得て、フィリピンの地震・火山の監 視能力強化を主な目的とする標記の研究課題を実 施した.ここではその概要と成果を紹介する.

課題の提案と採択

フィリピンはわが国やインドネシアと同様に西 太平洋の沈み込み帯に位置し、地震・火山活動が 活発で、過去に多くの地震・火山災害に見舞われ てきた、フィリピンで地震・火山監視を担当する 国の機関は科学技術省(DOST)に所属するフィ リピン火山地震研究所(PHIVOLCS、Philippine Institute of Volcanology and Seismology)であ る、PHIVOLCSの組織は、地震観測予知部、火 山監視噴火予知部、地質地球物理研究開発部のほ かに、広報と自治体や住民の防災教育とを専門に 担当する地質防災教育部門がある、観測・研究の 各部門も防災教育活動に深く関わっており、わが 国の地震・火山に関する観測・研究機関と比べ て、より社会とのつながりが強いと言える。

フィリピンの地震・火山観測システムは、2000

年代前半までに JICA の無償資金協力と技術協力 によって近代化がなされた.技術協力には日本の 気象庁が協力している.インドネシア、タイ、マ レーシア等の周辺国は 2004 年のインド洋大津波 のあと地震観測体制が大幅に強化されたが、フィ リピンは幸いにして津波の影響を受けなかったこ ともあり、その後の強化は進んでいなかった.

そこでわれわれは、過去にフィリピンで地震・ 地殻変動・火山研究をしてきた国内の研究者に呼 びかけて、フィリピンの地震・火山の観測・監視 体制をより強化し、研究を促進することを目的と した研究課題を提案した.平成20年度課題とし て応募した最初の提案は監視能力強化と地震火山 研究のみであったが、2年目の提案で情報の防災 への利活用推進のために情報ポータルサイトの構 築を加えた.また地震災害の主因でもある脆弱な 組積造住宅の簡易耐震診断も研究項目に加えたこ とで、平成21年度に実施課題として採択された.

SATREPS は通常の研究助成制度とは異なり, 採択後半年から1年をかけて事前の調査研究を行 い,JICA と相手国代表機関との間の合意文書 (Record of Discussion, R/D)を締結し,2年目 から本格的な実施が始まる.われわれの5年間の 研究課題は,こうして平成22年度に本格的に開 始した(図1).

3. 研究の概要

本課題で,われわれは図2に示すように4つの 研究実施項目からなるマスタープランを基に研究 を行った.研究の詳しい成果については総合報告 書および各研究者による論文を参照していただく として,ここではその概要を研究項目ごとに述

図1 2010年2月のキックオフワークショップ

図2 研究のマスタープラン. 津波は後から加えられた

べる.

3.1 リアルタイム地震・津波監視

防災科研が中心となって、PHIVOLCSの既存 の衛星テレメータ観測点のうちの10カ所に、そ れまで設置されていなかった広帯域地震計と強震 計を設置した(図3,4).同時に、震源の位置・ 規模・メカニズム解・震源時間関数を広帯域地震 波形から自動的に解析するプログラム(SWIFT) を導入した.これにより短周期地震計のみではわ からなかった中規模以上の地震の震源に関する情 報が迅速に正しく把握できるようになった(図4).

また, IT 強震計を使った安価な震度計を開発 した. 震源決定用の観測網とは異なり, 震度観測 は密度が本質的に重要なため安価でなければなら ない. センサーは震度ゼロと1を区別できること が必要十分で,時計はかりに10秒の誤差があっ てもかまわない. この「IT 震度計」を100台導 入し, フィリピンで初の準リアルタイム計測震度

図3 広帯域地震計と強震計の設置

観測網を構築した.集められたデータの表示と管理のシステムは PHIVOLCS が開発した(図5).

津波は計画段階では研究対象に含まれていな かったが、2011年3月11日に東日本大震災が発 生したことを受けて、急きょ新たに津波観測の項 目を加えた。フィリピンも過去に津波災害が発生 しているが、津波監視体制は、広帯域地震計も強 震計も潮位計もオフライン観測のみで、量的警報 システムの整備はこれからという状況であった。 そこで、超低電力遠距離無線テレメトリシステム を用いた簡易潮位観測システムを開発し、国内の 5カ所で実験観測を実施した。また、量的津波警 報の構築に向けて、気象庁と建築研究所の研究者 が中心となって指導して津波シミュレーション データベースを構築した(図6)。

3.2 地震発生ポテンシャル評価

フィリピンでは、長大な横ずれ断層のフィリピ ン断層が国を北から南まで縦断している.この断 層は1990年7月に死者約2,000人をだしたルソ ン島地震 M7.8をはじめ過去に多くの被害地震を 発生している.現在最も大きな災害が懸念されて いるのは、フィリピン断層の副断層ともいえる、 マニラ首都圏を通る西バレー断層(旧称マリキナ 断層)であるが、われわれはフィリピン断層全体 の運動と活動履歴を明らかにするための研究が空 白となっている中部レイテ島からミンダナオ島ま でのフィリピン断層を対象に選んだ.

名古屋大学, 京都大学, 高知大学がミンダナオ

図4 広帯域地震観測点と震源メカニズム解

図5 フィリピン向け震度計と震度マップの例

島全域で4年間,年に1回のGPSキャンペーン 観測を行った.得られた相対変位ベクトルの観測 データを解析し,プレート境界がフルにカップリ ングしていたとしても説明しきれない変位場が示

図6 津波シミュレーションデータベース

されたことから, 剛体的なブロック運動のモデル を提唱した. 国土地理院のチームは GPS 連続観 測を実施し, 断層のクリープや大地震に伴った変 位を観測するとともに, プレート間地震の検出能 力が向上されることを示した(図7).

京都大学および広島大学の活断層研究グループ は、ミンダナオ島のフィリピン断層沿いの地形の

図7 ミンダナオ島の GPS 観測と西南日本との比較

空中写真判読とトレンチ調査によって、断層のセ グメンテーションと活動履歴を調査し、複数に分 かれるセグメントのそれぞれの再来周期と最大地 震規模を推定した(図8).

その他、レイテ島とマスバテ島におけるクリー プ速度の検出や、フィリピン断層以外の断層の空 中写真判読を行い、海域の断層変位を明らかにす るための音響探査も実施した.研究期間中に発生 した 2012 年 2 月のネグロス地震(M6.9)では海 底探査を実施し、津波の発生原因が海底地すべり であることを発見した.2013 年 10 月のボホール 地震(M7.2)では、地表断層の UAV(ドローン) による空撮調査を行った.

3.3 リアルタイム総合火山観測

PHIVOLCS はピナツボ,タール,マヨン,ブ ルサン,カンラオン,ヒボックヒボックの6つの 火山で火山観測を実施してきたが,広帯域地震計 や GPS 連続観測といった最新の観測はしておら ず,また,データはマニラでは監視することがで きなかった.名古屋大学,東海大学,京都大学, 気象庁等が中心となって,近い将来大きな災害が 懸念されるタール火山と,頻繁に小噴火を繰り返 しているマヨン火山に,広帯域地震計,空振計, 監視カメラ,GPS,電磁気計からなる最新の観測 機材を設置して,データをマニラまで衛星通信回 線を用いて伝送し,PHIVOLCS本部で監視・解 析ができるシステムを整備した.

防災科研と名古屋大学のチームは広帯域地震計 と空振計を設置した.それまでに開発していた震 源モデルの推定手法に加えて,地形や湖を考慮し たグリーン関数の計算手法の開発によって,地下 のマグマによる圧力源の動的な状況がより詳しく 推定できるようになった.また高周波地震波形の 振幅のみを用いた自動震源決定法を開発し,人間 の手を介さないより信頼度の高い一次震源情報を 提供できるようになった(図9).

図8 ミンダナオ島における断層トレンチ調査

東海大学のチームはタール火山に全磁力および ULF帯3成分磁力計および2成分電場観測装置 を設置し,連続観測を行った(図10).これによ りタール火山の電磁気学的な3次元構造を明らか にして,噴火サイクルを説明する熱水溜まりのモ デルを提唱した.

また名古屋大学・京都大学・気象庁のチームは タール火山とマヨン火山に GPS を設置して、マ ニラの PHIVOLCS 本部でリアルタイム解析を行 うシステムを構築した.これにより、地下の圧力 源をより迅速に正確に推定できるようになった. 過去および研究期間中に発生したマヨン火山の噴 火で、圧力源や山体収縮量の推定を行った.

3.4 防災情報の発信と利活用推進

開発途上国の地震災害のほとんどは, 脆弱な建 物の倒壊によって引き起こされる. 脆弱な建物を なくすか補強する以外に地震災害を減らす方策は いまのところない. 地震発生ポテンシャル評価で 断層の動きと履歴が分かったとして, 住民がそれ に対してなしうることは, 家が地震に対して弱け れば補強することである. そこで防災科研は民間 の建築設計事務所, 政策研究大学院大学, 横浜国 立大学等の研究者の協力を得て, まずフィリピン 型コンクリートブロック住宅の振動台実験を実施 した.この実験のビデオは防災教材として公開さ れている(図11).

実験で明らかになった建物の脆弱性を基に,ア ンケート方式の住民向け簡易診断システム(図 12),およびパソコンを用いた建築技術者向けの 簡易耐震診断システムを開発し,普及活動を行っ た.また期間中に発生したボホール地震の建物被 害で,診断法の正しさを検証した.

2011年3月の東日本大震災の発生を受け、その 4カ月後に、在日フィリピン人の津波被災者に対す るタガログ語によるビデオインタビューと津波体 験談のマンガの製作・出版を行った。PHIVOLCS スタッフが入れ替わりで来日して、防災科研の チームとともに、北は岩手県久慈市から南は福島 県いわき市までに住むフィリピン人被災者を探し 出してインタビューを行い、合計50名から証言 を得た.その中から、命からがらで津波から逃げ おおせた4人の体験談をマンガにして出版した (図13).マンガは英語にも翻訳され、ユネスコ の津波防災教材ともなった.

地震津波監視能力強化と、地震発生ポテンシャ ル評価、リアルタイム総合火山観測の3つの研究

図 9 タール火山の震源と減衰構造モデル

項目によって得られた観測・監視情報,それらの データを解析して得られた研究成果,ならびに簡 易耐震診断と津波被災者インタビューからなる本 SATREPS 課題のすべての成果を,PHIVOLCS のホームページの一部に「地震津波火山防災情報 ポータルサイト」として構築し,発信した.この ポータルサイトは、プロジェクト実施中に共同研 究者および PHIVOLCS 内部向けの情報共有にも たいへん有用であった(図14).

4. 社会実装,人材育成,その後の展開

SATREPS は JST による国際共同研究助成制 度であると同時に JICA の技術協力でもあり,相 手国である開発途上国に対する研究成果の社会実 装が強く求められている.われわれの研究課題は 社会実装と言う意味では比較的うまくいっている と自己評価している.その大きな理由の1つは, PHIVOLCSが地震・火山観測の研究機関である と同時に現業機関だからである.われわれが実装 した観測・解析システムは,短い試験期間を経 て,そのまま定常業務に活用されているため,観 測システムに関しては研究期間の早期段階から社 会実装されたと言える.観測データとその解釈も 恒常的にメディア等を通じて発信されている.

社会実装が早期に実現できたもう1つの理由 は、冒頭にも述べたように、PHIVOLCSが観測・ 研究の部門とともに、自治体や住民の防災教育を

図 10 タール火山での磁力計の設置

図 11 フィリピン型庶民住宅の振動台実験

図 12 フィリピン住宅の簡易耐震診断

専門とする地質防災教育部門を有していることで ある.われわれが作った簡易耐震診断や津波体験 マンガは,いち早く自治体・住民の防災教育プロ グラムに導入された.

図 13 東日本大震災フィリピン人被災者体験マンガ

図 14 地震火山防災情報ポータルサイト

PHIVOLCSの観測・研究の3部門の職員も, 防災教育活動には常日頃から深く関わっている. PHIVOLCS全体が,国レベルだけでなく,自治体・ 住民レベルの防災対策に近い場所で活動している といえる.わが国の研究者と比べて,社会とのつ ながりがより強く,われわれのほうが PHIVOLCS から学ぶことも非常に多かった.

また、SATREPS は研究を実施するだけでなく、 研究活動を通じて相手国機関の人材育成を促進す ることも求められている.日本側代表機関の防災 科研は大学と違って留学生の受け入れ制度がない ため、現地でのOJT(現場研修)が中心となっ たが、東海大学が学生を受け入れて博士の学位を 与えることができた.

2018年10月現在,プロジェクト終了後3年半 が経過している.地震観測データは定常業務に活 用されるとともに防災科研にも分岐され,ひき続 き地震・津波監視技術の向上の研究に活用されて いる.名古屋大学もひき続き広帯域地震計による 地震および火山の共同研究を継続している.IT 震度計はフィリピン全国の90カ所(予備10台) に展開されて稼働すると同時に,別のSATREPS 課題でブータンにも同様のシステムが導入され た.フィリピンでは本SATREPS課題とは別の JICA 無償資金協力事業で地震・津波監視機材が その後供与され,SATREPSの研究成果がさらに 有効利用されている.

一方,活断層研究グループはその後も科研費等 でフィリピンでの研究と人材育成を継続してい る.東海大学も科研費でタール・マヨン火山の共 同研究を継続している.断層と地震被害調査に導 入した UAV の技術は,防災科研が JST の e-ASIA 課題でひき続き発展させ,火山火口監視やハザー ドリスク評価に活用されている.

5. おわりに

SATREPS は、科学技術外交という、それまで にはなかった目的で創設された国際共同研究およ び国際協力であり、われわれのように開発途上国 をフィールドとし、研究とともに災害軽減技術の 実装と人材育成による開発途上国への貢献を目指 す者にとっては非常に利用価値が高く、有用な制 度である.

災害は、それを引き起こす極端な自然現象が低

頻度で発生することにその本質がある.自然現象 を解明するにも、防災技術を開発するにも、多く の経験を蓄積することが不可欠であるが、低頻度 であることはその最大の障害である.しかし日本 だけで研究していては百年かかる経験の蓄積も、 もし世界の10カ所で同時に研究すれば10年です む.防災研究における国際共同研究の最大の利点 はそこにあると言える.

開発途上国での活動にはいろいろな苦労も多 い.しかし日本の防災研究に関わる研究者が, SATREPSのような制度を活用していろいろな国 の研究者との交流を深め、一過性のプロジェクト ではなく、長期にわたって共同研究を継続するこ とが、自然災害軽減のためには、遠回りのように みえて早道であると信じるものである.

参考文献

Inoue, H. and Solidum, R.U. (ed.). 2015. Special issue on enhancement of earthquake and volcano monitoring and effective utilization of disaster mitigation information in the Philippines. J. Disas. Res., 10, 5–149.

井上 公 [いのうえ ひろし] 現職 防災科学技術研究所,社会防災シ ステム研究部門主幹研究員 略歴 名古屋大学理学部地球科学科卒業. 建設省建築研究所国際地震工学部. 防災科学技術研究所地圏地球科学技術研究部,地震研 究部,2017年より現職,理学博士(地震学)

研究分野 防災技術

ハワイ島で起きる地震の原因と特徴

山田卓司

1. 火山と地震の島、ハワイ島

太平洋のほぼ中央に位置するハワイ諸島は, ホットスポットにて上昇したマントル物質の部分 溶融により生じたマグマによる火山活動で形成さ れた.ハワイ諸島のうち,最も南東にある最大の 島がハワイ島である.現在も活発な火山活動が見 られる島であり,東を向いたエンゼルフィッシュ のような形をしている (図1).

ハワイ島では地震活動も活発であり、過去には 大地震も複数回発生している.ハワイ島はまさに 「火山と地震の島」である.火山活動によって作ら れた島であるがゆえに、ハワイ島で起きる地震も ほとんどが火山活動に関連するのであろうと思わ れるかもしれないが、実はハワイ島で起きる大地震 の多くは、火山活動に直接関連した地震ではない.

本稿では、まずハワイ島における最近の火山活 動の推移を概観する.次に、ハワイ島で起きる地 震の原因と特徴について整理することで、ハワイ 島で起きる大地震の原因は、ハワイ島の重みに よって島自体が横に広がることであることを説明 する.本稿の最後では、日本の地震との類似点や 相違点を考察しながら、地震発生予測について考 えたい.

2. ハワイ島での最近の火山活動の推移

先に述べたとおり,ハワイ島はホットスポット 噴火を起こしており,新たな段階に進んだのかも での火山活動によって形成された島の1つであ しれない.ついに2018年5月にはハレマウマウ る.移動しないホットスポットで形成された過去 クレーターで大規模な水蒸気爆発を起こすととも の島々は,太平洋プレートが年間約10cmの速さ に,ERZ東部で活発な割れ目噴火活動が始まっ

(ヒトの爪が伸びる速さ) で北西方向へ移動して いることに伴って移動しており, 天皇海山列にま で時代をさかのぼることが可能である. ただし, ホットスポットがどの程度の時間・空間精度で移 動しないと言えるのかについては, 最近の研究課 題となっている (Konrad *et al.*, 2018).

ハワイ島は四国の半分ほどの大きさであり、5 つの火山から形成されている(図1).すなわち, 北から順にコハラ、フアラライ、マウナケア、マ ウナロア、キラウエアである.このうち現在最も 活発な火山活動を行っているのがキラウエアであ り、マウナロアも活火山である.世界各国の天文 台があるマウナケアと、ハワイ島の約半分の面積 を占めるマウナロアはともに標高4,000 mを超え る山であり、海底からの高さは実に9,000 m 近く に達する.また、ハワイ島南東沖にはロイヒ海底 火山があり、海底からの高さは約3,000 m、山頂 は海面下約1,000 m にある.現在の活動がこのま ま継続すれば、あと1~10 万年で山頂が海上に顔 を出し、新しい「島」になると考えられている.

キラウエアの火山活動は,1983年に始まった プウオオ火口からの噴火に特徴づけられるイース トリフトゾーン(East Rift Zone:東部噴火帯. 以後,ERZと表記する)中部での活動が長らく 続いていた.その後,2008年3月に山頂のハレ マウマウクレーターに新たな火口が出現し,2009 年,2011年,2015年にはハレマウマウクレーター とプウオオ火口との中央部付近で小規模な割れ目 噴火を起こしており,新たな段階に進んだのかも しれない.ついに2018年5月にはハレマウマウ クレーターで大規模な水蒸気爆発を起こすととも に,ERZ東部で活発な割れ目噴火活動が始まっ

Earthquakes in the Island of Hawai'i from 1868 to 2017

図 1 1868 年から 2017 年までにハワイ島で起きたマグニチュード 6 以上の地震の震央分布および ハワイ島の 5 火山の位置. 震央とは、震源を地表に投影した位置のことである

た. 2018年8月下旬の段階では, ERZ東部での 割れ目噴火活動もかなり収まってきているが, こ のまま収束に向かうのか, 予断を許さない状況で ある.

3. ハワイ島で起きる2タイプの地震

現在進行中の火山活動に関連すると思われる活 発な地震活動も観測されている.また,過去には ハワイ島でも大地震が複数回発生している.本章 では,ハワイ島で起きる地震を2タイプに分類 し,それぞれの原因と特徴について整理する.必 ずしも,マグマの移動や噴火そのものが大地震を 引き起こしているわけではないことに注意が必要 である.

3.1 火山活動に直接関係する地震

このタイプの地震は、マグマの移動やマグマだ レマウマウクレーターが陥没し、無理な力がか

まりの膨張・収縮によるマグマ活動と直接の関係 性のある地震と言える.地下において,通り道が できていない場所にマグマが移動するには,無理 やり通り道を作りながら移動しなければならな い.その際,地下の岩石に無理な力がかかり,地 震が発生することがある.また,マグマだまりの 膨張・収縮に伴って,地下浅部の力のバランスが 崩れることにより,地震が発生することもある.

ハワイ島で発生する地震のうち,キラウエア山 頂のハレマウマウクレーター直下および ERZ 浅 部で起きる地震は、このタイプである。2018 年 5 月からの ERZ 東部の割れ目噴火に伴い、ハレマ ウマウクレーター直下でも地震活動が活発になっ ている.これは、ハレマウマウクレーター直下に あるマグマだまりから ERZ へのマグマ供給量が 増加したことに伴い、マグマだまりが収縮してハ レマウマウクレーターが陥没し、無理な力がか

図2(a) ホットスポットにより太平洋プレート上につくられたハワイ島の模式図.(b) プラスチック カップに入ったプリンをお皿に出した際の模式図

かっているためである. このタイプの地震はマグ マ活動を直接反映しているため、火山活動の推移 を予測するために重要な地震であるが、実は、ハワ イ島で起きる大地震の多くはこのタイプではない。

3.2 ハワイ島の重さによる地震

ハワイ島は海底からの高さが 9.000 m 近くある 巨大な「溶岩のかたまり」である. 最近の火山噴 火によってできた新しい島なので、地質学的に柔 らかい. これがまさにハワイ島で起きる大地震の 原因である、火山活動で島が大きくなると、自分 の重さのため、太平洋プレートに乗っているハワ イ島は少し沈みながら横に広がる。太平洋プレー ト表面はツルツルではないので、太平洋プレート とハワイ島の底に摩擦が生じ、すべろうとする力 が摩擦力の大きさに達すると、ずるっと間欠的に すべる、プレートが動いているのか、上の陸地が 動いているのかの違いはあるが、日本列島に沈み 込む太平洋プレートとの境界で、2011年の東北 地方太平洋沖地震のような大地震が起きるのと同 じしくみである.

たとえれば、お皿の上に乗せられたプリンのよ うなものである、プリンはハワイ島に、お皿は太 平洋プレートに相当する. プラスチックカップに 入っているプリンをお皿の上に逆さにして、カッ プ底の爪を折ると、プリンがお皿の上に出てく る、静かにカップをのけて、プリンの横に置いて みよう. すると、 プリンの高さはカップ内の元の

高さより低く、プリンの底の面積(円の半径)は、 カップ内にあったときよりも大きくなっている (図2). これは、やわらかいプリンが自分の重さ で変形し、高さが低くなると同時に横に広がった からである、プリンが横に広がる際に、プリンの 底とお皿の間にすべりが生じている.

なお、もう少し踏み込んだ説明をすると、太平 洋プレートはハワイ島の重みでやや下に凸となる ので、ハワイ島で起きるこのタイプの大地震は、 低角逆断層型となる. 1868 年や 1975 年にハワイ 島南部で起きた大地震は、まさにこのタイプだと 考えられている(図1). 2018年5月のERZ東部 の地震も、このタイプである.

また、ハワイ島の重みにより、太平洋プレート (リソスフェア)よりも下のマントル浅部(アセ ノスフェア)にも無理な力がかかる (McGovern, 2007). このため、ハワイ島では深さ 50 km 程度 のやや深い地震も発生する. 最近の例として、ハ ワイ島北西部で2006年に起きたキホロ湾地震 (マグニチュード 6.7) があげられる (Yamada et al., 2010). この地震も、火山活動に直接関連した 地震ではない.

4. ハワイ島における大地震発生予測は 日本より容易か?

ハワイ島が自重により横に広がることが大地震

図3 バネで相互につながったブロックの模式図

の原因であるならば,地震発生予測は比較的容易 であるように感じるかもしれない.なぜなら,噴 出するマグマの重さからハワイ島の現在の重さが 計算できるので,横に広がろうとする際に太平洋 プレートとの境界にかかる力の大きさが計算でき るからである.この力が静止摩擦力の大きさに達 すれば地震が発生するのだが,地震発生予測は日 本同様,容易ではない.その理由を考察しよう.

床に置かれたブロックにバネが繋がれており、 このバネをゆっくり引っ張る状況を考えよう、バ ネの伸びに比例して、ブロックと床の間には「す べろうとする力」(剪断応力)がかかり,剪断応 力が最大静止摩擦応力(強度)と等しくなればす べりが生じる. 地震の発生は、多数のバネとブ ロックが繋がれた系に継続的に力をかけた場合、 いつ、何個のブロックがすべるのかを求めること に相当する (図3). 問題は、これらのバネの強 さも強度も、場所ごとに異なることである (Yamada et al., 2010, 2017). さらに、微小地震 も大地震と似た性質を持っている可能性が高いた め (Yamada et al., 2005, 2007), 地震発生予測は, 非常に小さな膨大な量のブロックが強さの異なる 多数のバネで繋がれた系において、ブロックがい つ、何個すべるのかを予測せよ、ただし、バネの 強さやブロックの最大静止摩擦力の空間分布の詳 細は不明である、という難題に近い、誤解を恐れ ずにたとえれば、10年後の何月何日何時にどの 程度の強さの台風がどこに上陸するか予測せよ. という状況に近いかもしれない. つまり、ハワイ 島での地震発生予測も日本におけるそれも同様 で、現状では精度の高い予測は非常に困難である と考えられている.現在,観測可能なデータを用

いてどこまで地震発生予測が可能であるのか,精 力的な研究が行われている.

参考文献

- Konrad, K. et al. 2018. On the relative motions of longlived Pacific mantle plumes. Nat. Commun., 9, 854. doi: 10.1038/s41467-018-03277-x
- McGovern, P.J. 2007. Flexural stresses beneath Hawaii : Implications for the October 15, 2006, earthquakes and magma ascent. *Geophys. Res. Lett.*, **34**, L23305. doi:10.1029/2007GL031305
- Yamada, T. et al. 2005. Radiation efficiency and apparent stress of small earthquakes in a South African gold mine. J. Geophys. Res., 110, B01305. doi:10. 1029/2004JB003221
- Yamada, T. et al. 2007. Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. J. Geophys. Res., 112, B03305. doi: 10.1029/2006JB004553
- Yamada, T. et al. 2010. Kīholo Bay, Hawai'i, earthquake sequence of 2006 : Relationship of the main shock slip with locations and source parameters of aftershocks. J. Geophys. Res., 115, B08304. doi:10.1029/2009 JB006657
- Yamada, T. et al. 2017. Spatial pattern in stress drops of moderate-sized earthquakes on the Pacific Plate off the south-east of Hokkaido, Japan : implications for the heterogeneity of frictional properties. Prog. Earth Planet. Sci., 4: 38. doi:10.1186/s40645-017-0152-7

山田卓司

授

[やまだ たくじ] 現職 茨城大学大学院理工学研究科准教

略歷 京都大学理学部卒,京都大学大学 院理学研究科博士後期課程修了,東京大

学大学院理学系研究科研究員,ボストン大学教養学部 地球科学科客員研究員,米国内務省地質調査所ハワイ 火山観測所客員研究員,北海道大学大学院理学研究院 附属地震火山研究観測センター助教を経て現職 研究分野 地震学・火山物理学・海底測地学

地震の揺れを伝えない技術への挑戦

梶原浩一

1. はじめに

「日本人は,未来永劫,地震の揺れから解放さ れないのだろうか?」

2015年より,防災科学技術研究所は,民間企 業と大学の有識者らと,地震の揺れを伝えない広 範囲な空間の実現をイメージした装置の技術検討 を始めた.ここでは,地震から解放される都市 (フロート・シティー)を最終的な目標とした,3 次元浮揚技術の研究について概要を紹介する.研 究着手での基本的な方針は,1)構造物を含む街 区(図1)全体の地震対策へ適用,2)未来を見 据えた新しい技術を志向,3)浮揚(浮上)技術 への挑戦の3つである.

2. 背 景

防災科学技術研究所地震減災実験研究部門で は、実大三次元震動破壊実験施設^{1,2)}(E-ディフェ ンス)等による実証実験を有効な手段として、地 震防災・減災に関わる科学技術の高度化を進めて いる.おもな課題は、構造物における耐震、免 震・制振、センシング技術と地震防災・減災に係 わる新しい技術である.

ここで紹介する研究の端緒は、2011 年東北地 方太平洋沖地震である.それまでの地震の概念を 覆すほど大規模で長時間の揺れが生じ、その地震 動には、短周期に加えて、東京と大阪の高層ビル を大きく揺する長周期の波も含まれていた.ま た、2016 年熊本地震の特徴も研究推進の重要な 要因である.直下型でありながら、強力な長周期

の成分を含む地震であり、しかも波状的に発生し て地域住民に多くの不安と苦しみを与えた.

現実的な地震対策は、構造物・ライフラインが 地震に揺すられても耐え、人々が危険な場所から 避難し、地震後は、速やかに復旧・復興に着手す ることである。それをもってしても、地震が発生 した地域では、住民の生活と経済活動に長期間に わたる多大なダメージが生じる。このような震災 のサイクルを軽減・回避、あるいはなくすため に、普段の生活を営む街の広い空間で、短周期成 分から長周期成分を含むさまざまな地震の揺れ を、劇的に低減する技術開発が必要ではないかと 考えた。

3. 推進体制

熊本地震の前年である 2015 年に、所管省庁の 指導担当より、「民間企業などによる社会実装を 想定し、リスクがあっても革新的でインパクトの ある研究も進めるべき」との指導があり、外部資 金獲得のための研究公募の提案もあった. そこ で、兵庫耐震工学研究センター内で検討会議を数 回実施し、地震から解放される都市(フロート・ シティー)を目標として、浮上による3次元地震 動低減技術(ここでは3次元浮揚技術)の研究を 実施することにした. このテーマによる外部資金 の応募については、残念ながら落選であったが、 当初の技術検討から賛同いただいた(株)日立製 作所と浮揚技術に知見を持つ摂南大学の有識者ら とともに研究を継続している.また、研究の推進 に興味や賛同をいただいている大学,社団法人, 建設会社、設計事務所などの有識者の方々と情報

図1 街区内の構造物のイメージ

や意見交換により今後の計画立案と公募への計画 も進めている.

4. 研究の概要

地震の揺れは、水平2方向、鉛直方向と軸周り の回転の成分に分けられる。この揺れを低減する 免震技術は、一般に積層ゴムの上に構造物を積載 し、水平方向の地震による揺れを低減するもので ある。2016年末までの免震建物の棟数は、ビル で約4.300棟、戸建住宅で約4,700棟、両者を併 せると約 9.000 棟である³⁾. 鉛直方向の地震の揺 れについては、構造体への損壊の影響が少ないと され、建物の免震では、水平方向の揺れの対策が 目的とされている.世界初の3次元免震を実現し た集合住宅(知粋館)4)の事例を除けば、鉛直方 向の免震が具備された建物は存在しない.本研究 では、普段の生活空間や、居室内の二次部材(非 構造部材)等の安全対策も見込んだ鉛直免震技術 とともに、浮上させて水平方向の揺れを劇的に低 減する浮揚装置の研究開発を進めている.

4.1 フロート・シティーと浮揚装置の構成

フロート・シティーについては,現時点では複数の構造物を含む200m×200m程度の街区で構成されるものに加え,50m×50m程度の区画で連結される街区もイメージしている.この街区の基部を免震構造と同じように多点支持するための浮揚装置の検討を進めている.

空気浮揚をイメージすると,浮揚により水平2 方向と縦方向の地震動を同時に低減する装置を連 想するかもしれないが,ここでの装置構成は以下 である.

1) 微小な浮揚により水平方向の地震入力を
回避

2)縦方向は周期4秒以上の鉛直免震機構を具備し対応

図2に街区と装置のイメージを示す.研究過程 では、数百kmから数tを支持する装置を段階的 に作製し、その動作を強震動の加振により検証す ることにした.最終的には1つの装置で1,000t 以上の支持荷重を目指している.

4.2 浮揚技術について^{5~7)}

浮揚は、面で荷重を支持するため、比較的安価 な装置構成が見込めるうえ、極低摩擦が実現でき る.この浮揚技術は、一般産業における重量物運 搬向けパレットや台車. 札幌ドームの可動式の天 然芝サッカーフィールド「ホヴァリングステージ」 でしられている^{8.9)}. これらの装置では、袋に溜 まった空気を用いているために 鉛直方向に地震 動と共振するばねの特性が発現する場合が想定さ れる. そこで本研究では、ゲームセンターのエア ホッケーのように非常に薄く浮揚させる方法を用 いることにした、装置の構造としては、鋼製の円 盤内(図3)に複数の貫通孔を開け、圧縮空気を 吐出するようにした簡易なものである. また、浮 揚高さを50 µm 程度とすることで、この微小な 空気層が固いバネ周期を持つため、地震動の周期 特性では浮上面と支持面が接触しにくい特性を持 つ.これにより、積載物の空気層によるロッキン グの問題も回避できる.

4.3 鉛直免震技術について^{5~7)}

想するかもしれないが、ここでの装置構成は以下 鉛直方向についても、地震に含まれる長周期成

装置位置復元機構

図2 街区(上)と浮揚装置(下)のイメージ

図3 装置下面の圧縮空気を吹出す円盤

分への対応を考慮した装置構成を検討した.本装 置では、負剛性リンク機構(以後、負ばねと称す) による鉛直免震機構を用いている. 負ばねとは. 通常のばねが変位に対して反力を増すのに対し、 変位に対して反力を減じるばねのことである。単 体での負ばねは存在しないため、そのような特性 を持つようにリンク機構を用いて構成される。図

4に簡単な例を示す.これは四節リンク機構に引 張ばねを掛けたものである。角度θが小さくなる と、ばねの引張力は増大するが鉛直方向の反力は 減少する.図5のように、正ばね(図中では圧縮 ばね)と組み合わせて使い、目標とする支持荷重 に対し適切にばね、およびリンク長さを設計すれ ば、非常に柔らかいばねとして重量物を支持する ことができる.これにより、従来にない低床で柔 らかい固有周期を持つ鉛直免震が可能となる。

4.4 試験装置と実験について

これまで3台の試験装置を作製し実験を行っ た. 試験装置の1号機は、装置の構成原理を確認 するためのものであり、支持荷重 250 kg、水平を 空気浮揚,鉛直をリンク機構による正ばね+負ば ねで構成し、空気を吹き付けるベースには平滑な 強化ガラス板を用いた(図6.7). E-ディフェン スの実験で、阪神・淡路大震災と東日本大震災で 観測された地震波を入力したところ、激しく揺れ

図4 四節リンク機構による負ばね

図5 正ばね(圧縮ばね)と負ばねの組合せ

る震動台の上で,白い天板がほぼ静止したように 見える状況となった.目的とする動作の確認がで きたが,鉛直方向の装置稼働におけるストローク 不足と,浮揚時にわずかな傾斜で水平方向に移動 することが課題となった.

課題の対策を検討するために作製した2号機で は支持荷重拡大を意識し、1号機の装置構成に加 えて、重量物を持ち上げるアクチュエータ機能を 持つエアダンパを設置した.これにより支持荷重 を1tに高めた.試験装置2号機を図8に示す.

1 号機で課題となった鉛直ストロークは±15 cm に伸ばし,水平の移動対策には,地震後に中央に 押し戻す復元機構を設けた.水平で13 秒程度の 固有周期を持つため,さらに検討していく.2017 年に実施した E-ディデンスでの実験では,1995 年兵庫県南部地震,2011 年東北地方太平洋沖地 震,2016 年熊本地震の前震と本震の震度7を含 む記録地震波で加振試験を実施した.実験結果を 図9に示す.複数の加振の1例であるが,熊本地 震の KiK-net 益城波(前震・本震)の入力で,水 平2方向,鉛直方向の台上加速度と装置上の加速 度を比較したところ(最大加速度での比較),水 平方向を1/16 から1/30 に,鉛直方向を1/8 から 1/15 とする結果を得た.さらにデータを精査し

図6 試験装置1号機の外観

図7 試験装置1号機の実験状況

図8 試験装置 2号機

ている.

度を比較したところ(最大加速度での比較),水 3号機は1号機と同じ装置構成であるが,改良 平方向を1/16から1/30に,鉛直方向を1/8から したリンク機構による正ばね+負ばねを用いた場 1/15とする結果を得た.さらにデータを精査し 合の3次元地震入力の低減効果を確認した.さら

図 9 熊本本震(KiK-net 益城町 本震)での振動台上と装置上の加速度

に高い鉛直方向の性能を得られており、これにつ いては別の機会に結果を紹介する.

5. 今後の取組み

さらに検討すべき技術的なハードルは、 積載能 力の高荷重化と鉛直方向の振動低減の高性能化で ある、長期の研究期間が必要となる場合も考えら れるため、その過程では、建物や装置などの軽量 物への実用化、E-ディフェンスでの大規模実験 を見据え、最終的な目標の開発に到達したい。

ここで紹介したフロート・シティーのための研 究は、支持機構の装置開発に係るものである、フ ロート・シティーの実現には、計画・設計・建設・ 運用を支援するソフトシステムも必要となる. さ らには、既存の耐震技術も含め社会の変化に応じ た技術開発の推進、さまざまな対策技術の社会実

装のための資源投下、そして、これらの必要性と 有効性を示し、強靭な都市の構築を進めるための システムが必要と考える.

研究グループは、多機関と有識者の替同を得 て、「事前復興」と「コミュニティデザイン」の 視点に立脚し、社会・経済活動の不断・永続を担 保するためのレジリエントな都市に向けた.計 画・設計・建設・運用 を支援するシステム(仮 称: IPSR: Integrated Pre-construction System for Resilient city) も目指している. 膨大な合意 形成と資源を導くファンド形成にも有用ではない だろうか.

おわりに 6.

近い将来に発生するとされる首都直下地震,南 海トラフ地震では、人的被害、構造物、交通網な

どの物理的被害や工場・オフィスでの生産活動の 低迷に加えて、国際的なマーケットの反応による 株価の乱高下や風評による経済的損失も国難を招 く要因として懸念される.高度な耐震技術を含む ハードとソフト両面の技術力による質の高さを含 み、都市の安全対策水準が高いことを示すため、 国として防災への取組みなどの姿勢を国際的にア ピールすることが必要である¹⁰.

さらに地震に関する研究が進み,対応するべき 地震の規模と特徴が明らかになれば,地震防災・ 減災のためのさまざまな技術の質の向上に向けた 目標が明確になると期待している.

謝辞

これまでのE-ディフェンス実験とそれに関わ る研究は、関係省庁、国内外の研究機関、大学、 地方自治体、民間企業の参画者と関係者、防災科 学技術研究所の諸先輩方と関係各位からの多大な ご尽力により推進されおり、本研究に係わる実験 の推進においても、多くの貴重なご指導ご鞭撻を いただいている.ここに記して感謝の意を表する ものである.

参考文献

- 大谷圭一・小川信行・箕輪親宏・御子柴正・田村 修次・中村いずみ. 1998. 実大三次元震動破壊実験 施設の開発(I)一建設計画と要素技術開発の概要一. 防災科学技術研究所研究報告, 58.
- 防災科学技術研究所.2018. 国立研究開発法人防 災科学技術研究所兵庫耐震工学研究センター ホー ムページ. http://www.bosai.go.jp/hyogo/movie.html (2018年4月1日閲覧)
- 日本免震構造協会.免震制振データ集積結果. http://www.jssi.or.jp/menshin/doc/ms_ss_data.pdf (2018年9月29日閲覧)
- 4) Takahashi, O., Aida, H., Tsuyuki, Y. and Fujita,

T. 2008. Construciton of civil building using three dimensional seismic isolation system. The 14th WCEE.

- 5) 安田正志・佐藤栄児・山田 学・梶原浩一・早津 昌樹.2017. 負剛性リンク機構と空気浮揚機構を直 列に用いた3次元免震装置の開発(試験実験装置の 概要と E-Defense 加震装置による実大3次元地震波 加震実験の報告).日本機械学会論文集,83,17-00057
- 6) 安田正志・佐藤栄児・山田 学・梶原浩一・早津 昌樹. 2017. 負剛性リンク機構と空気浮揚機構を直 列に用いた3次元免震装置. 日本機械学会, Dynamics and Design Conference 2017 講演論文集.
- 7) 山田 学・安田正志・梶原浩一・佐藤栄児・早津 昌樹. 2018. 空気浮揚による水平無周期3次元免震 装置の実大地震波加振実験.日本機械学会,関西支 部第93期定時総会講演会講演論文集.
- 3) 鋼鈑工業株式会社. 重量物搬送「エアベアリン グ」. http://www.i-koko.jp/product/ab/index.html (2018年9月28日閲覧)
- 札幌ドームホヴァリングサッカーステージ. https://www.sapporo-dome.co.jp/dome/hovering. html
- 10) 首都直下地震対策専門調査会. 2005. (第18回) 事務局説明資料3 平成17年6月15日. http://www. bousai.go.jp/kaigirep/chuobou/senmon/shutochokka jishinsenmon/18/index.html (2018年9月28日閲覧)

梶原浩一

[かじわら こういち]

略歴 東北大学大学院工学研究科建築学 専攻修了. 1997 年博士(工学)東京大学. 2000 年科学技術庁防災科学技術研究所 主任研究官. 2011 年4月より防災科学技 術研究所兵庫耐震工学研究センター長

現職 国立研究開発法人防災科学技術研究所地震減災 実験研究部門長,兵庫耐震工学研究センター長 **専門** 振動制御,振動実験

2018 年北海道胆振東部地震(速報)

岡田義光

1. はじめに

2018年9月6日,北海道胆振地方中東部を震源とする M6.7 の地震が発生し,北海道で初となる震度7が厚真町で記録された.11月30日現在の被害状況は,死者41人,重傷19人,中等傷8人,軽傷723人,住家全壊450棟,半壊1,489棟,一部損壊10,529棟などと報告されている(北海道総務部危機対策課,2018).

震源地の周辺では広域にわたって土砂崩れが発 生したほか,50km以上離れた札幌市清田区でも 大規模な液状化による被害が生じた.また,震源 に近かった苫東厚真火力発電所の被災を契機とし て電力の需給バランスが崩れ,北海道全体がブ ラックアウトになるという異常事態を生じた.

内陸の大地震は通常10~20kmの深さで発生 することが多いが、今回の震源となった北海道日 高地方は、例外的に深さ30~40kmで規模の大 きな地震が発生する地域である.ここでは、この 特異な地震について、その概略を速報する.

2. 本 震

北海道胆振東部地震(M6.7)は、2018年9月 6日03時07分59.3秒、厚真町・むかわ町の境界 付近の深さ37kmを震源として発生した.この 地震により、厚真町鹿沼で震度7、安平町・むか わ町で震度6強、千歳市・日高町・平取町・札幌 市東区で震度6弱が観測されたほか、北海道から 中部地方の一部にかけて震度5強~1が観測され た(図1). 今回の地震では、震源付近の広い範囲で大規模 な土砂崩れを生じたことが、1つの特徴である. 図2左は防災科研(2018)により推定された面的 震度分布、右は国土地理院(2018)により判読さ れた斜面崩壊・堆積分布を示す.震度7や6強が 推定された地域と斜面崩壊の多かった地域は必ず しも一致していない.これは、前者が主として表 層地盤の分布に依存するのに対し、後者は地形や 地質の分布に左右されるためであろう.

土砂崩れの原因としては,震源地の付近に広く 分布する降下軽石層がすべり面となって,強震動 により表層崩壊が引き起こされたものと考えられ ている.また,前日に台風21号による大雨が降っ ていたことや,この6~8月は例年になく降水量 が多かったことなども影響したと言われている.

なお,この地震で,安平町の K-NET 追分観測 点では 1,796 gal (三成分合成)の最大加速度が観 測されている.

本震の発震機構は東北東-西南西方向に圧力軸 を有する逆断層型であった(図1). 震源の深さは 37kmとやや深かったが, 胆振地方東部・日高地 方から浦河沖の周辺は, 陸域で通常発生する地殻 内の地震よりも深い場所で地震が多発する特徴が ある. 今回の震源から南東約 85kmの地点で1982 年3月21日に発生した浦河沖地震(M7.1)も, 震源の深さは40km, 発震機構は北東-南西方向 に圧力軸を持つ逆断層型であった.

3. 余震活動

この地震の発生後35日間における本震周辺の 地震活動の様子を図3に示す.余震域はほぼ南北

図 1 2018 年北海道胆振東部地震による震央付近の震度分布と発震機構解(気象庁, 2018ab に加筆)

図2 面的推定震度分布(防災科研,2018に加筆)と斜面崩壊・堆積分布(国土地理院,2018に加筆)

に約30kmの領域に広がっており、余震は東に 傾斜する面上に分布し、その深さは15kmから 45 km にわたっている.

この間に発生した最大規模の余震は、本震12 分後の9月6日03時20分に発生したM5.5の地 震であり、その深さは36kmであった.

また、今回の地震に伴ったマグニチュード3.5 以上の余震の積算回数を、わが国の内陸および沿 岸で近年発生した主な地震の積算回数と比較し て、図4に示す、今回の地震の余震活動度は、 1995年兵庫県南部地震や2005年福岡県西方沖の 地震と同程度であったことがわかる.

地殻変動と震源モデル 4.

今回の地震に伴って,日高町の門別観測点が南

図3 本震後35日間(9/6~10/11)の震央分布(M ≥1.0)と東西断面図(M≥1.7)(気象庁, 2018c に加筆)

図4 北海道胆振東部地震発生後35日間のM3.5 以上の余震の積算回数と,過去に内陸およ び沿岸で発生した地震との比較(気象庁、 2018c に加筆)

	E ×	断層の型	予想 マグニチュード	平均 活動間隔	最新 活動時期	発生確率		
	X C					30年以内	50 年以内	100 年以内
石狩低地	也東縁断層帯							
主部	約 66 km	東側隆起 逆断層	7.9 程度	1000 年~ 2000 年程度	1739 年~ 1885 年	ほぼ0%	ほぼ0%	ほぼ 0% ~0.001%
南部	54 km 以上		7.7 程度以上	1700 年程度 以上	不明	0.2% 以下	0.3% 以下	0.6% 以下

表1 石狩低地東縁断層帯の長期評価(地震調査研究推進本部 2010)

に約5cm, 苫小牧市の苫小牧観測点が東に約4 cm 移動するなどの地殻変動が GNSS により観測 された.また、陸域観測技術衛星「だいち2号」 の合成開口レーダー干渉解析の画像から、 震央周 辺で最大約7cmの隆起、および隆起域の東側で 最大約4cmの東向きの地殻変動が検出された。

これらの地殻変動データに基づいて、国土地理 院(2018)は矩形断層1枚からなる逆断層性の震 源断層モデルを提出している。長さ14.0km,幅 15.9kmの断層面はほぼ南北走向(N2°W)で東 に高角(74°)で傾き、すべり量は1.3mとして いる. ただ, 断層面上端の深さは約16km, 下端 の深さは約31kmとなっており,余震の深さ分 布とは必ずしも調和していない.

5. 地学的背景

今回の震源の西側には南北方向に延びる石狩低 地東縁断層帯の地表トレースが存在している.今 回の地震とこの活断層との関連は不明であるが, 地震調査研究推進本部地震調査委員会(2010)は 石狩低地東縁断層帯について表1のような長期評 価結果を公表している.同断層帯は主部と南部と に分かれ,今後30年以内の地震発生確率は,主 部がほぼ0%,南部が0.2%以下だが,南部は「わ が国の主な活断層のなかでは,発生確率がやや高 いグループに属する」との評価がなされている.

より広域を俯瞰すると、太平洋プレートの千島 海溝からの斜め沈み込みを原因として、「千島前 弧スリバー」と呼ばれる千島海溝に沿った陸側プ レート内の巨大地質構造ブロックが西進し、中央 北海道で東北日本弧と衝突することにより、日高 山脈は現在も西に湾曲すると同時に隆起を続けて いると言われている(多田・木村, 1987).

このような地学的背景によって,日高地方の深 部は強い東西圧縮の場となっており,今回の地震 はこのような広域応力場の中で発生したものと考 えることができよう.

参考文献

防災科学技術研究所. 2018. 平成 30 年北海道胆振東部 地震クライシスレスポンスサイト. http://crs.bosai. go.jp/DynamicCRS/index.html?appid=5a55564a581c4 e2885b59a658535fd3e

- 北海道総務部危機対策課.2018.平成30年北海道胆振 東部地震による被害状況等(第111報).
- 気象庁. 2018a. 平成 30 年 9 月 6 日 03 時 08 分頃の胆 振地方中東部の地震について(平成 30 年 9 月 6 日報 道発表).
- 気象庁. 2018b. 地震調査研究推進本部地震調査委員会 (平成 30 年 9 月 11 日)提出資料.
- 気象庁. 2018c. 地震調査研究推進本部地震調査委員会 (平成 30 年 10 月 12 日)提出資料.
- 国土地理院. 2018. 平成 30 年(2018 年) 北海道胆振東 部地震に関する情報. http://www.gsi.go.jp/ BOUSAI/ H30-hokkaidoiburi-east-earthquake-index.html#8
- 地震調査研究推進本部地震調査委員会. 2010. 石狩低 地東縁断層帯の長期評価の一部改訂について. https: //www.jishin.go.jp/main/chousa/katsudansou.pdf/ 06.ishikarai-teichi_2.pdf
- 多田 堯・木村 学. 1987. 千島弧南西端における衝 突現象と地殻変動. 地震, **40**, 197-204.

岡田義光

[おかだ よしみつ] 現職 地震予知総合研究振興会非常勤理 事,理学博士

略歷 東京大学大学院理学系研究科地球 物理学專門課程博士課程中退. 東京大学

地震研究所助手(富士川地殻変動観測所),防災科学技 術研究所地震調査研究センター長,企画部長,理事長 などを経て現職

研究分野 地震学, 地殻変動論

著書 日本の地震断層パラメター・ハンドブック(共 著, 鹿島出版会),現代測地学(共著,日本測地学会), 自然災害の事典(共著,朝倉書店),日本の地震地図 南海トラフ・首都直下地震対応版(東京書籍)他

● 大震災の教訓と古都の香り

評

NAMAZU の会 編 新編 鎌倉震災志

評者 石橋克彦

いきなり私事で恐縮だが,私の母は1923年9月1日, 1歳半のときに鎌倉の扇ガ谷で大正12年関東地震に襲 われ、倒壊家屋に埋もれたそうである.揺り返しで隙間 ができて弟・母親ともども助け出されたという.そのと き父親は横須賀に出掛けており,使えなくなった帰路の 横須賀線「横須賀→鎌倉」の切符が今も私の手許にある. 母がそのまま落命していれば私は存在しないわけで,以 前から鎌倉の震災は他人事とは思えなかった.鎌倉は激 甚被災地の1つで,約500人が亡くなっている.

仕事のうえでも関東地震は研究テーマの1つであり, 昨年の歴史地震研究会で1257年と1293年の鎌倉地震に ついて発表した際には,昭和5年(1930)に当時の鎌倉 町が発行した『鎌倉震災誌』を参考にした.しかし,古 い文章であるうえに行政資料的で読みにくかった.とこ ろが,これを現代的な文章に直した本がでたことを研究 会場で知り,早速購入した.それが本書である.

この本は、鎌倉市役所の自主研修グループ NAMAZU の会が製作した.文章を読みやすくしただけではなく、 今後の減災に資するように内容も工夫されている.市の 職員が、市民の応援を得てこのような本を作り上げたと いうのは喜ばしいことである.

「第一章 新編 鎌倉震災志」で,『鎌倉震災誌』の内容 が現代表記でコンパクトに紹介されている.地区別や, 公共施設・社寺ごとの被害が手軽にわかるほか, 避難・ 救護・復興事業・震災碑などの記事も含んでいる(ただ し,詳しく知ろうとすると『鎌倉震災誌』に戻る必要が ある).写真も原本よりは見やすいものが多数掲載され ている,救援金寄附者一覧と名士の被災状況一覧も収録 されているが,その内容は,居住者や別荘滞在者に皇 族・華族・政財軍の要人,文化人が多かった鎌倉の土地 柄と時代状況を偲ばせる.

「第二章 関東大震災体験者の手記から」が本書の目玉 の1つだろう.海と山に囲まれた狭い平地で日本の歴史 を牽引した鎌倉は、大正震災では、被災地中で最激烈な 地震動,火災,津波,山崩れ,液状化によるすべての災 害に見舞われた. これらを市内各地で経験した多彩な 人々の体験談が、さまざまな文献から抄出され、地震の 瞬間、津波、避難、助け合い、予兆などに分けて70頁 近く掲載されている。生々しい内容は、鎌倉市民の今後 の防災・減災に役立つだけではなくて、地震列島のどこ に住む人にも参考になるだろう. 文壇や政財界の有名人 の手記も多くて興味深い、石橋湛山が、震災前は町のこ とには無関心で町民からも「別荘の人」と異邦人扱いに されていたが、震災で一変して助け合うようになったと 書いているのが印象深い、本書巻頭に掲載された原本の 序文にも、事前事後の不用意が震災を加重したことは後 世への教訓だが、震災が人心の私利の念を取り去り、一 致協力して復興に精進したことは後代に伝えて範となす に足ると述べられている. なお, 1つ1つの手記に「雪 ノ下」とか「由比ガ浜」とか地名が注記されているのに 地図がなくて、残念に思った、そもそも本書には地図が 1枚もなく、画竜点睛を欠いた感がある.

「第三章 江戸時代の関東地震―鎌倉方面の被害記録か ら」は、やや不正確な記述もあるが、地震専門家にとっ ても興味深い、幕末までの地震について鎌倉地方の寺社 や民衆の被害と復興に焦点を当てており、元禄十年と 十六年の震災および宝永四年の富士山噴火災害を、一連 のものとしてとらえるべきという指摘は重要である。

巻末に「鎌倉方面地震略年表」が掲げられているほか, 書中に,社寺建築物の被害の特徴,鎌倉同人会と鎌倉国 宝館,鎌倉の地盤災害,明応四年の津波などのコラムが ある.評者はどれも面白く読んだが,在住する有力者ら の尽力によって東京・京都・奈良の帝室・恩賜博物館と 並びうる鎌倉国宝館が建設され,震災復興と並行して寺 社・美術品等が保存されていく話には感銘を受けた.

本書は、将来の震災軽減に有益なだけではなくて、古 都鎌倉の香りを味わい、世界的文化都市の歴史の一端を 知るうえでも貴重でユニークな書物といえる.日本列島 全域で地震が多発する今日、「全国区」の地震資料とし て、多くの公共図書館が架蔵してほしいと思う.

<冬花社,2017年7月,A5判,294ページ,1,800円+税> [いしばし かつひこ 神戸大学名誉教授] ● 歴史地震研究の今を知るために

5日俊文著 近世の巨大地震

評者 堀川晴央

本書では、近世(安土桃山時代から江戸時代まで)に 発生した地震の実態を、古文書や絵図を読み解くことで 明らかにしている、「巨大地震」と書かれると、南海ト ラフや千島海溝から日本海溝沿いのプレート間で起こる 大規模な地震だけが本書の対象にみえるが、内陸地震も 多数取り上げている、プロローグの章で著者が記すとお り、南海トラフ沿いの地震が発生する前後には内陸の地 震活動が活発化し、かつ、内陸地震は大きな被害を発生 させうる以上、内陸地震も取り上げることは、今後発生 が予想される南海トラフ沿いの巨大地震前後の地震活動 を考える上で必要であろう、

対象とした地震は、1586年に発生した天正地震から 1855年の安政江戸地震までで、以下に示す章立てのよ うに、発生年順に並べられている。

- ・史料から歴史地震を復元する―プロローグ
- ・天正地震, 文禄・慶長の地震一十六世紀末~十七世 紀前半の地震一
- ・元禄関東地震,宝永地震一十七世紀末~十八世紀前
 半の地震一
- ・越後三条地震,出羽庄内地震--+九世紀前半の地震--
- ・弘化善光寺地震, 嘉永の東海地震, 安政江戸地震一十 九世紀前半の地震—
- ・過去の災害を知る―エピローグ

いくつかの章では、章のタイトルとしては掲げられな い形でとりあげられている地震がある。そうした地震を 含め、本書が対象とした地震の総数は20を超える。だ からと言って、個別の地震に関する記述はけっして薄く はなく、さまざまな文書史料や絵図を用いて、それぞれ の地震による地変や被害を記している。

このようにさまざまな地震を見てきたうえで、津波と 土砂災害により死者が多くなるという知見を最終章で示 してはいるが、個々の地震に関する記述は基本的には独 立しており、最初から順番に読んでいかなくてもよいと 思う、とりあげられている地震は、目次に掲載されてい る節のタイトルからわかるので、目次を見て自分の興味 を引いた地震から読んでいくこともできるだろう.

本書では、実に多くの史料や文献が用いられており、 著者の熱意には頭が下がる思いである.歴史地震研究上 の新たな試みとして俳人の史料が用いられた結果、当時 の社会の人的ネットワークの一端を垣間見ることもでき てたいへん興味深い.加えて,用いた史料に関して,史 料名や関連する文献あるいは原史料の所蔵先が本文中に 記されている点は(記されているのが当然なのかもしれ ないが)興味を持った地震に関する資料に立ち帰れる点 で便利である.

理系の評者からすると、歴史系の著書は図が少なく、 文字だけで説明する傾向が強いように思われるが、本書 は絵図からおこしたものや被害が大きいところを示した 図が豊富に含まれ、本文を理解する助けとなる.ただ、 本の大きさの制約から、図を大きく掲載することが難し く、図中の字がいささか読みにくいことがある点や、 せっかく図が入っていながら、図と本文との対応が明瞭 に記されておらず、せっかくの図が活かしきれていない ことがある点は惜しまれる.なお、本文中に出ている地 名がすべて図に掲載されているわけではないので、地形 図を片手に(実際には、国土地理院がインターネット上 で公開している地理院地図で地名を検索するのが効率が よいと思う)読んでいただくと、内容の理解が深まると 思う.

東日本大震災以後、歴史地震研究に関心を寄せる方が 多くなったように感じられる.その中には、歴史地震研 究でわかったことをいろいろ総説的に知りたい人と、実 際にどのように研究が進められているかを知りたい人が いるだろう.本書は、後者の要求に応える本としてお薦 めしたい.本書を読んでいただければ、さまざまな歴史 資料から何をどのように明らかにしていくかをおわかり いただけると思う.安政江戸地震の章からエピローグの 章にかけて述べられているように、文書の記載から被害 率を推定する際の問題点や、被害の程度を示す半潰や大 破といった言葉の意味するところなど、議論のある点に も触れられており、歴史地震が学問としてまだまだやる ことがあることをも知っていただけるであろう.

<吉川弘文館, 2018 年 3 月,四六判, 256 ページ, 1,800 円+税> [ほりかわ はるお 国立研究開発法人産業技術総合研究所]

● 測地学へ易しくいざなう

河野宣之・日置幸介 著 動く地球の測りかた

評者 加藤照之

この著書には副題として「宇宙測地技術が明らかにし た動的地球像」が与えられている.こちらのほうが内容 をよく表しているが、想定されている読者は中高生ある いは文系の人を対象としているようで、手に取りやすい 題名が表に出ている.数式などはいっさい出てこない. 地球やプレートテクトニクス・地震などに興味をもって いる人が入門として本著をひも解くことを想定してい る.地球ってなんだろう?大きさはどのくらい?地面は どうして動くんだろう?など誰しも一度は抱く疑問に答 えようとする試みは古来より行われてきたが,この学術 分野である測地学は中高生や一般の方々にはとっつきに くい分野であるように思われる.このような誰でも気軽 に読めて地球の理解を深めてもらえるような本を上梓し てくださった著者に敬意を表したい.

本書は8章から構成されており、まず第一章で地震と プレートテクトニクスについて簡潔にその基本的な概念 が提示される.4ページ程度であり、必要最小限の基礎 がコンパクトにまとめられている. つづいて第二章では 距離を測ることの原理とその手法について詳しく解説さ れる, 普段の定規などで長さを測ることからはじめて, 宇宙技術を使っての長さ測定まで、手際よく述べられて いる。いわば測地学の基礎の基礎と言ってよいだろう。 同時に宇宙測地技術への入口にもなっている. つづく第 三章はあとの第五章とともに、本書の最も重要な宇宙測 地技術 (VLBI, SLR と GNSS) が詳しく解説されている. VLBIや SLR は原理が比較的単純なので、初学者にも 理解は可能であろう.とはいえ、数式を使わずに原理を 述べているので、かえって難しくなってしまっていると ころもある.たとえば VLBI の項では、求めたい2点間 距離 $D m D = c\tau_a / \cos \theta$ であることを最初に説明してお けば(たぶんこのくらいは中学生でも理解可能であろ う)、あとの文章ははるかにわかりやすくなったと思わ れる. また、周波数変換やバンド幅合成の項はいささか 難しいので(まえがきには"読み飛ばしてよい"と書か れているものの).たとえばコラムのような囲み扱いに してみてもよかったのではないだろうか、 第四章は VLBI や SLR によって証明されたプレート運動につい て述べられる、ここはプレートテクトニクスが"作業仮 説"から"パラダイム"に転換した、いわば地球科学上 の科学革命とも言われる部分であるが、記載は比較的落

ち着いたトーンで書かれている。むしろ、大陸間の距離 を cm 精度で計測できる技術の完成に目を見張るものと 感じてもらえればと思うのである 第五章は GNSS の 解説であるが、同時にその応用である海底地殻変動観測 への応用も併せて記述されている.測位の原理は単独測 位から相対測位へと続き、オーソドックスな説明が過不 足なくされている.ただ、二重位相差の説明で衛星のペ アも地上局のペアも数字(1と2)を使っていることか ら整数不確定性の記述 N_{1-2.1-2}というようになり、いさ さかわかりにくい. 観測点ペアを数字とするなら衛星ペ アをアルファベットにするなどして $N_{a,b,1-2}$, あるいは もっとわかりやすく N^{a-b}などと記載すれば読者には理 解が容易になったのではないだろうか. 第六章は GNSS によるプレート運動や地震に伴う地殻変動さらには著者 らの業績でもある"ゆっくり地震"の発見など、日本が 誇る成果が記述されている. 初学者にはわくわくするよ うな章ではないだろうか. 海底地殻変動については最近 の成果まで示されている. 第七章は基準座標系と地球回 転という測地学のコアな部分への宇宙測地技術の展開 が、また第八章は宇宙測地技術の未来について述べられ ている. ここではマルチ GNSS や合成開口レーダとの 協働などについて触れられている.いずれも記載は簡潔 でわかりやすいが、もう少し宇宙測地技術によってどん な未来への展望が開けるのか、世界をリードする著者ら であるだけに、ぜひとも著者なりの見解を示してもらえ るとよかったと、残念に思った、評者も宇宙測地技術に は多少の思い入れもあるので、少し辛口の批評になって しまったが、そもそも難しい学術的な内容をこれだけか み砕いてわかりやすく、なおかつ不案内な読者を適切に 測地学の世界へといざなう内容になっており、ぜひとも 測地学に触れたことのない多くの、特に若者に、手に 取って読んでほしい,そして一人でも多く測地学を志す 若手研究者が出てほしい.と思ったしだいである. <東海大学出版部, 2017年12月, A5判, 124ページ, 1.800円+税>

[かとう てるゆき 神奈川県温泉地学研究所所長]

土木学会地震工学委員会編 2016年熊本地震被害調査報告書 土木学会、2017年12月,B5判,490頁,7.236円

後藤忠徳 著

日本列島大変動一巨大地震,噴火がなぜ相次ぐ のか

ポプラ社, 2018年4月, 新書判, 278頁, 886円

静岡新聞社 編

沈黙の駿河湾 東海地震説 40年 静岡新聞社、2018年4月, B6判, 416頁, 1,944円

山﨑 登 著

地震予知大転換一最近の地震災害の現場から 近代消防社,2018年4月,四六判,168頁,1,512円

日本建築学会 編

2016 年熊本地震災害調査報告 日本建築学会、2018 年 6 月, A4 判, 405 頁, 7,236 円

「防災読本」出版委員会 著,中井 仁 監修

教育現場の防災読本 京都大学学術出版会,2018年6月,菊判,586頁,4,104円

上山明博 著

地震学をつくった男・大森房吉 青土社,2018年6月,四六判,272頁,2,052円

島村 誠 著

気象・地震と鉄道防災 成山堂書店,2018年7月,A5判,168頁,2,160円 井田喜明 著

シミュレーションで探る災害と人間 近代科学社,2018年7月,A5判,176頁,2,808円

鎌田浩毅 著

地球とは何か 人類の未来を切り開く地球科学 SB クリエイティブ, 2018 年 8 月, 新書判, 224 頁, 1,080 円

藤岡換太郎 著

フォッサマグナ 日本列島を分断する巨大地溝 の正体

講談社, 2018年8月, 新書判, 240頁, 1,080円

栗山泰史・五十嵐朗 著
 地震保険の理論と実務:必ず来る震災に備えて
 保険毎日新聞社、2018年8月、A5判、287頁、3.240円

木村 学・宮坂省吾・亀田 純 著
 揺れ動く大地―プレートと北海道
 北海道新聞社、2018年8月、A5判、185頁、1.944円

ロバート・マイヤー・ハワード・クンルーザー 著. 中谷 内一也 訳

ダチョウのパラドックス 災害リスクの心理学 丸善出版,2018年8月,四六判,200頁,3,024円

武村雅之 著

減災と復興 明治村が語る関東大震災 風媒社,2018年9月,四六判,213頁,2,376円

東大社会研・玄田有史・有田 伸 編 **危機対応学―明日の災害に備えるために** 勁草書房,2018年9月,四六判,292頁,2,592円

公益財団法人 地震予知総合研究振興会(ADEP)の人事異動について

任務解除

磯部 誠 本部 事務局 参事任務解除 地震調査研究センター 事業推進管理部長

30. 9. 1

編集後記

今号の冒頭

エッセイは,西 出 元気象庁長官に執筆をお願いし た.ひと時も気が休まることのない 警報業務に携わられた長官時代のご 苦労が,行間より偲ばれる.

前号が発行される直前の6月18 日、大阪府北部でM6.1の浅発地震 が発生し、高槻、枚方、茨木などの 各市で震度6弱が記録された.高槻 といえば、地震関係者にはよく知ら れた京大防災研阿武山地震観測所の おひざ元である.中規模の地震なが ら、ブロック塀倒壊により女児が犠 牲になるなど死者は6名を数え、負 傷者も443名に達した(11月6日 現在).人口の密集する都市が襲わ れ大きな被害を出したこの地震につ いて、京大防災研の岩田・飯尾・松 島の3先生に解説をお願いした.

今回の震源付近は活断層の密集地 域である.この地震が周辺の活断層 や地震活動に及ぼす影響について, 東北大学の遠田先生より見解をご寄 稿いただいた.これらの活断層での 地震誘発に至らないことを祈りた い.また,西日本の内陸部における 地震活動の活発化は南海トラフ地震 の前触れであるとの説がある.この ような連鎖も願い下げにしてほしい.

ところで、巨大地震というと南海 トラフ地震ばかりがクローズアップ されるが、わが国にはもう1つ、北 海道沖にも巨大地震の巣があり、そ の発生確率は年々高まっていること が、近年の津波堆積物調査などから 明らかになってきた、そのあたりの 事情について、東大地震研の佐竹先 生より詳しい解説記事を頂戴した. 今年は、福島県沖の日本海溝付近 で M7 級地震が連発した 1938 年か ら 80 年,また小磐梯が山体崩壊を 起こした 1888 年から 130 年の節目 にあたっている.福島県を襲ったこ の 2 つの自然災害について,国立科 学博物館の室谷先生よりご寄稿をい ただいた.

さて、千島海溝、日本海溝の先に は、伊豆・小笠原海溝が連なってい る、本年は小笠原諸島が日本に返還 されてから50年の節目ともなって いるが、小笠原諸島周辺は規模の大 きな深発地震が多発することで知ら れている、その中でも、2015年5 月に発生した深発地震は、規模も深 さもこれまでで最大級であり、初め て日本全国が有感となった、この異 常な深発地震について、東大地震研 の古村先生より、興味深い謎解きの 論文を寄稿していただいた。

一方,海外では,ハワイ島のキラ ウエア火山が本年5月3日に噴火し て以来,700軒におよぶ住宅が破壊 される事態となっている.5月4日 に発生した M6.9の地震は逆断層型 であったが,沈み込み帯のような圧 縮場ではないハワイでなぜこのよう なメカニズムの地震が起きるのか, 素朴な疑問が湧く.この謎につい て,茨城大学の山田先生より明快な 解説記事をいただいた.

前号(65号)では、国際プロジェ クトSATREPSの全体概要につい て本蔵先生よりご紹介いただいた が、今号からは、その個別プロジェ クトについて順次紹介する。今回 は、フィリピンプロジェクトの解説 を、防災科研の井上先生にお願いし た.

このほか、工学的な話題として

は、地震に襲われた際にただちに浮 上して地震動を遮断する三次元浮揚 技術の開発について、防災科研の梶 原先生よりたいへんに夢のある解説 記事をいただいた.

また,囲み記事としては,近年さ まざまに利用されている地震波干渉 法について東北大学の中原先生より 解説記事をいただいたほか,発生か ら70周年を迎えた1948年福井地震 と,韓国で初めて確認された液状化 被害について,当振興会の澤田専務 理事および大保副主席主任研究員よ り,それぞれ話題を提供していただ いた.

なお、本号の最終記事としては、 本年9月6日に北海道で初めての震 度7を記録し、41名もの死者を生 じた北海道胆振東部地震(M6.7) について、その速報を掲載した。

今号もバラエティー豊かな内容と なったが,読者諸氏の忌憚ないご意 見やご批評をお願いしたい.

(Y.O.)

☆ 本誌は、地震予知総合研究振興会のホームページにおいて閲覧および PDF のダウンロードができます. ☆「地震ジャーナル」冊子の新規配布,配送先変更,配送停止については当振興会までご連絡ください.